吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集
#加载TF并导入数据集
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #设置训练的超参数,学习率 训练迭代最大次数,输入数据的个数
learning_rate= 0.001 #(learning_rate)
training_iters = 100000
batch_size = 128 # 神经网络参数
n_inputs = 28 #输出层的n
n_steps = 28 # 长度
n_hidden = 128 # 隐藏层的神经元个数
n_classes = 10 # MNIST的分类类别 (0-9) # 定义输出数据及其权重
# 输入数据的占位符
x = tf.placeholder("float", [None, n_steps, n_inputs])
y = tf.placeholder("float", [None, n_classes]) # 定义权重
weights ={
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden])),
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
} biases = {
'in': tf.Variable(tf.random_normal([n_hidden,])),
'out': tf.Variable(tf.random_normal([n_classes, ]))
} #定义RNN模型
def RNN(X, weights, biases):
#把输入的X转化成X (128 batch * 28 steps ,28 inputs)
X = tf.reshape(X,[-1,n_inputs]) # 进入隐藏层
# X_in = (128 batch * 28 steps ,28 hidden) X_in = tf.matmul(X,weights['in']) + biases['in']
# X_in = (128 batch * 28 steps ,28 hidden)
X_in=tf.reshape(X_in,[-1,n_steps,n_hidden])
#采用LSTM循环神经网络单元 basic LSTM Cell
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0,state_is_tuple=True)
# 初始化为0 lstm 单元 由 h_cell,h_state两部分组成
init_state=lstm_cell.zero_state(batch_size,dtype=tf.float32) # dynamic_rnn接受张量(batch ,steps,inputs)或者(steps,batch,inputs) 作为X_in
outputs,final_state=tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=init_state,time_major=False)
results=tf.matmul(final_state[1], weights['out']) + biases['out']
return results #定义损失函数和优化器,采用AdamOptimizer优化器
pred=RNN(x,weights,biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op= tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # 定义模型预测结果及准确率计算方法
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 训练模型及评估模型 # 定义一个会话,启动图,每20次输出一次准确率
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
# 训练,达到最大迭代次数
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_xs = batch_xs.reshape((batch_size, n_steps, n_inputs))
sess.run(train_op, feed_dict={x: batch_xs, y: batch_ys})
if step % 20 == 0:
print(sess.run(accuracy,feed_dict={x:batch_xs, y:batch_ys}))
step +=1

吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集的更多相关文章
- 吴裕雄 PYTHON 神经网络——TENSORFLOW 无监督学习处理MNIST手写数字数据集
# 导入模块 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 加载数据 from tensor ...
- 吴裕雄 python 神经网络TensorFlow实现LeNet模型处理手写数字识别MNIST数据集
import tensorflow as tf tf.reset_default_graph() # 配置神经网络的参数 INPUT_NODE = 784 OUTPUT_NODE = 10 IMAGE ...
- 吴裕雄 python 神经网络——TensorFlow实现AlexNet模型处理手写数字识别MNIST数据集
import tensorflow as tf # 输入数据 from tensorflow.examples.tutorials.mnist import input_data mnist = in ...
- TensorFlow—多层感知器—MNIST手写数字识别
1 import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data import ...
- Tensorflow实现MNIST手写数字识别
之前我们讲了神经网络的起源.单层神经网络.多层神经网络的搭建过程.搭建时要注意到的具体问题.以及解决这些问题的具体方法.本文将通过一个经典的案例:MNIST手写数字识别,以代码的形式来为大家梳理一遍神 ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如 ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
随机推荐
- Java EE开发课外事务管理平台
Java EE开发课外事务管理平台 演示地址:https://ganquanzhong.top/edu 说明文档 一.系统需求 目前课外兴趣培训学校众多,完善,但是针对课外兴趣培训学校教务和人事管理信 ...
- codeforces 1285D. Dr. Evil Underscores(字典树)
链接:https://codeforces.com/problemset/problem/1285/D 题意:给n个数a1,a2,a3.....an,找到一个数X,使得X 异或所有的ai ,得到的ma ...
- mysql之instr函数
1.用于模糊查询,做为过滤条件 ---------------------------上级的新闻下级可以看到-------------------------SELECT a.pk_cms_nrgl_ ...
- JavaScript——BOM和DOM
什么是BOM bom:浏览器对象模型 什么是DOM dom:文档对象模型 BOM操作: 调用windows浏览器窗口 windows对象可以通过点调用子对象 windows.navigator对象,可 ...
- 文件分割合并DOS版
这个从163邮箱里翻出来的程序,2004年的修改日期,放这另存一下. 当时拿了一本C++的书来学,学了一阵就琢磨着做一个东东,然后就想起一个以前印象深刻的软件,叫做笨笨狗分割器. 当时主要还是靠3.5 ...
- 普及C组第三题(8.13)
2334. [NOIP普及组T2]战斗 (File IO): input:fight.in output:fight.out 时间限制: 1000 ms 空间限制: 524288 KB 开始贴图:. ...
- 关于Javaweb的比较好用的jar包概述
(连接数据库之前首先要导入这个数据库的驱动jar包 例如mysql 为mysql-connector-java-5.1.46.jar) 关于连接数据库的数据库连接池c3p0 jar包: c3p0-0 ...
- vmware Linux虚拟机挂载共享文件夹
本文主要是记录vmware linux虚拟机如何挂载共享文件夹过程,以备不时之需. 设置允许共享文件夹 1. 启用共享文件夹 [VM]->[settings]->[Options]-> ...
- 不可将布尔值直接与true或者1进行比较
不可将布尔值直接与TRUR.FALSE或者"0"."1"进行比较. 根据布尔值的定义,零值为"假"(记为FALSE),任何非零值都是&quo ...
- Mysql中的触发器【转】
转载:https://www.cnblogs.com/chenpi/p/5130993.html 阅读目录 什么是触发器 特点及作用 例子:创建触发器,记录表的增.删.改操作记录 弊端 什么是触发器 ...