七个用于数据科学(data science)的命令行工具

数据科学是OSEMN(和 awesome 相同发音),它包括获取(Obtaining)、整理(Scrubbing)、探索(Exploring)、建模(Modeling)和翻译(iNterpreting)数据。作为一名数据科学家,我用命令行的时间非常长,尤其是要获取、整理和探索数据的时候。而且我也不是唯一一个这样做的人。最近,Greg Reda介绍了可用于数据科学的经典命令行工具。在这之前,Seth Brown介绍了如何在Unix下进行探索性的数据分析

下面我将介绍在我的日常工作中发现很有用的七个命令行工具。包括:jq、 json2csv、 csvkit、scrape、 xml2json、 sample 和 Rio。(我自己做的scrape、sample和Rio可以在这里拿到)。任何建议意见、问题甚至git上的拉取请求都非常欢迎(其他人建议的工具可以在最后找到)。好的,下面我们首先介绍jq。

1. jq – sed for JSON

JSON现在越来越流行,尤其当API盛行了以后。我还记得处理JSON时,用grep和sed写着丑陋的代码。谢谢jq,终于可以不用写的这么丑了。

假设我们对2008总统大选的所有候选人感兴趣。纽约时报有一个关于竞选财务的API。让我们用curl取一些JSON:

 
 
1
curl -s 'http://api.nytimes.com/svc/elections/us/v3/finances/2008/president/totals.json?api-key=super-secret' > nyt.json

-s表示静默模式。然后我们用jq最简单的格式jq ‘.’,可以把得到的丑陋的代码

 
 
1
{"status":"OK","base_uri":"http://api.nytimes.com/svc/elections/us/v3/finances/2008/","cycle":2008,"copyright":"Copyright (c) 2013 The New York Times Company. All Rights Reserved.","results":[{"candidate_name":"Obama, Barack","name":"Barack Obama","party":"D",

转换成漂亮的格式:

 
 
1
< nyt.json jq '.' | head { "results": [ { "candidate_id": "P80003338", "date_coverage_from": "2007-01-01", "date_coverage_to": "2008-11-24", "candidate_name": "Obama, Barack", "name": "Barack Obama", "party": "D",

同时,jq还可以选取和过滤JSON数据:

 
 
1
2
3
4
< nyt.json jq -c '.results[] | {name, party, cash: .cash_on_hand} | select(.cash | tonumber > 1000000)'
{"cash":"29911984.0","party":"D","name":"Barack Obama"}
{"cash":"32812513.75","party":"R","name":"John McCain"}
{"cash":"4428347.5","party":"D","name":"John Edwards"}

更多使用方法参见手册,但是不要指望jq能做所有事。Unix的哲学是写能做一件事并且做得好的程序,但是jq功能强大!下面就来介绍json2csv。

2. json2csv – 把JSON转换成CSV

虽然JSON适合交换数据,但是它不适合很多命令行工具。但是不用担心,用json2csv我们可以轻松把JSON转换成CSV。现在假设我们把数据存在million.json里,仅仅调用

 
 
1
< million.json json2csv -k name,party,cash

就可以把数据转换成:

 
 
1
2
3
Barack Obama,D,29911984.0
John McCain,R,32812513.75
John Edwards,D,4428347.5

有了CSV格式我们就可以用传统的如 cut -d 和 awk -F 一类的工具了。grep和sed没有这样的功能。因为CSV是以表格形式存储的,所以csvkit的作者开发了csvkit。

3. csvkit – 转换和使用CSV的套装

csvkit不只是一个程序,而是一套程序。因为大多数这类工具“期望”CSV数据有一个表头,所以我们在这里加一个。

 
 
1
echo name,party,cash | cat - million.csv > million-header.csv

我们可以用csvsort给候选人按竞选资金排序并展示:

 
 
1
2
3
4
5
6
7
8
9
< million-header.csv csvsort -rc cash | csvlook
 
|---------------+-------+--------------|
|  name         | party | cash         |
|---------------+-------+--------------|
|  John McCain  | R     | 32812513.75  |
|  Barack Obama | D     | 29911984.0   |
|  John Edwards | D     | 4428347.5    |
|---------------+-------+--------------|

看起来好像MySQL哈?说到数据库,我们可以把CSV写到sqlite数据库(很多其他的数据库也支持)里,用下列命令:

 
 
1
2
3
4
5
6
7
8
csvsql --db sqlite:///myfirst.db --insert million-header.csv
sqlite3 myfirst.db
sqlite> .schema million-header
CREATE TABLE "million-header" (
    name VARCHAR(12) NOT NULL,
    party VARCHAR(1) NOT NULL,
    cash FLOAT NOT NULL
);

插入后数据都会正确因为CSV里也有格式。此外,这个套装里还有其他有趣工具,如 in2csv、 csvgrep 和csvjoin。通过csvjson,数据甚至可以从csv转换会json。总之,你值得一看。

4. scrape – 用XPath和CSS选择器进行HTML信息提取的工具

JSON虽然很好,但是同时也有很多资源依然需要从HTML中获取。scrape就是一个Python脚本,包含了lxml和cssselect包,从而能选取特定HTML元素。维基百科上有个网页列出了所有国家的边界线语国土面积的比率,下面我们来把比率信息提取出来吧

 
 
1
2
3
4
5
6
7
8
9
10
11
curl -s 'http://en.wikipedia.org/wiki/List_of_countries_and_territories_by_border/area_ratio' | scrape -b -e 'table.wikitable > tr:not(:first-child)' | head
<!DOCTYPE html>
<html>
<body>
<tr>
<td>1</td>
<td>Vatican City</td>
<td>3.2</td>
<td>0.44</td>
<td>7.2727273</td>
</tr>

-b命令让scrape包含和标签,因为有时xml2json会需要它把HTML转换成JSON。

5. xml2json – 把XML转换成JSON

如名字所说,这工具就是把XML(HTML也是一种XML)转换成JSON的输出格式。因此,xml2json是连接scrape和jq之间的很好的桥梁。

 
 
1
2
3
4
5
6
7
8
9
10
11
curl -s 'http://en.wikipedia.org/wiki/List_of_countries_and_territories_by_border/area_ratio' | scrape -be 'table.wikitable > tr:not(:first-child)' | xml2json | jq -c '.html.body.tr[] | {country: .td[1][], border: .td[2][], surface: .td[3][], ratio: .td[4][]}' | head
{"ratio":"7.2727273","surface":"0.44","border":"3.2","country":"Vatican City"}
{"ratio":"2.2000000","surface":"2","border":"4.4","country":"Monaco"}
{"ratio":"0.6393443","surface":"61","border":"39","country":"San Marino"}
{"ratio":"0.4750000","surface":"160","border":"76","country":"Liechtenstein"}
{"ratio":"0.3000000","surface":"34","border":"10.2","country":"Sint Maarten (Netherlands)"}
{"ratio":"0.2570513","surface":"468","border":"120.3","country":"Andorra"}
{"ratio":"0.2000000","surface":"6","border":"1.2","country":"Gibraltar (United Kingdom)"}
{"ratio":"0.1888889","surface":"54","border":"10.2","country":"Saint Martin (France)"}
{"ratio":"0.1388244","surface":"2586","border":"359","country":"Luxembourg"}
{"ratio":"0.0749196","surface":"6220","border":"466","country":"Palestinian territories"}

当然JSON数据之后可以输入给json2csv。

6. sample – 用来debug

我写的第二个工具是sample。(它是依据bitly的data_hacks写的,bitly还有好多其他工具值得一看。)当你处理大量数据时,debug管道非常尴尬。这时,sample就会很有用。这个工具有三个用处:

  1. 逐行展示数据的一部分。
  2. 给在输出时加入一些延时,当你的数据进来的时候有些延时,或者你输出太快看不清楚时用这个很方便。
  3. 限制程序运行的时间。

下面的例子展现了这三个功能:

 
 
1
seq 10000 | sample -r 20% -d 1000 -s 5 | jq '{number: .}'

这表示,每一行有20%的机会被给到jq,没两行之间有1000毫秒的延迟,5秒过后,sample会停止。这些选项都是可选的。为了避免不必要的计算,请尽早sample。当你debug玩之后你就可以把它移除了。

7. Rio – 在处理中加入R

这篇文章没有R就不完整。将R/Rscript加入处理不是很好理解,因为他们并没有标准化输入输出,因此,我加入了一个命令行工具脚本,这样就好理解了。

Rio这样工作:首先,给标准输入的CSV被转移到一个临时文件中,然后让R把它读进df中。之后,在-e中的命令被执行。最后,最后一个命令的输出被重定向到标准输出中。让我用一行命令展现这三个用法,对每个部分展现5个数字的总结:

 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
curl -s 'https://raw.github.com/pydata/pandas/master/pandas/tests/data/iris.csv' > iris.csv
< iris.csv Rio -e 'summary(df)'
  SepalLength      SepalWidth     PetalLength      PetalWidth  
Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100  
1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300  
Median :5.800   Median :3.000   Median :4.350   Median :1.300  
Mean   :5.843   Mean   :3.054   Mean   :3.759   Mean   :1.199  
3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800  
Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500  
     Name          
Length:150        
Class :character  
Mode  :character

如果加入了-s选项,sqldf包会被引入,这样CSV格式就会被输出,这可以让你之后用别的工具处理数据。

 
 
1
2
3
4
5
6
7
8
9
10
11
< iris.csv Rio -se 'sqldf("select * from df where df.SepalLength > 7.5")' | csvlook
|--------------+------------+-------------+------------+-----------------|
|  SepalLength | SepalWidth | PetalLength | PetalWidth | Name            |
|--------------+------------+-------------+------------+-----------------|
|  7.6         | 3          | 6.6         | 2.1        | Iris-virginica  |
|  7.7         | 3.8        | 6.7         | 2.2        | Iris-virginica  |
|  7.7         | 2.6        | 6.9         | 2.3        | Iris-virginica  |
|  7.7         | 2.8        | 6.7         | 2          | Iris-virginica  |
|  7.9         | 3.8        | 6.4         | 2          | Iris-virginica  |
|  7.7         | 3          | 6.1         | 2.3        | Iris-virginica  |
|--------------+------------+-------------+------------+-----------------|

如果你用-g选项,ggplot2会被引用,一个叫g得带有df的ggplot对象会被声明。如果最终输出是个ggplot对象,一个PNG将会被写到标准输出里。

 
 
1
< iris.csv Rio -ge 'g+geom_point(aes(x=SepalLength,y=SepalWidth,colour=Name))' > iris.png

我制作了这个工具,为了可以在命令行中充分利用R的力量。当然它有很多缺陷,但至少我们不需要再学习gnuplot了。

别人建议的命令行工具

下面是其他朋友通过twitter和hacker news推荐的工具,谢谢大家。

结论

我介绍了七个我日常用来处理数据的命令行工具。虽然每个工具各有所长,我经常是将它们与传统工具(如grep, sed, 和awk)一起使用。将小工具结合起来使用组成一个大的流水线,这就是其用处所在。

不知你们对这个列表有什么想法,你们平时喜欢用什么工具呢。如果你们也做了什么好玩的工具,欢迎将其加入数据科学工具包data science toolbox

如果你不认为自己能制作工具,也不用担心,下次当你写一个异乎寻常的命令行流水线时,记得将它放到一个文件里,加一个#!,加一些参数,改成可执行文件,你就做成一个工具啦~

虽然命令行工具的强大在获取、处理和探索数据时不容小觑,在真正的探索、建模和理解翻译数据时,你还是最好在科学计算环境下进行。比如R或者IPython notebook+pandas

七个用于数据科学(data science)的命令行工具的更多相关文章

  1. 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?

    本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...

  2. 用于数据科学的顶级 C/C++ 机器学习库整理

    用于数据科学的顶级 C/C++ 机器学习库整理 介绍和动机--为什么选择 C++ C++ 非常适合 动态负载平衡. 自适应缓存以及开发大型大数据框架 和库.Google 的MapReduce.Mong ...

  3. 3 个用于数据科学的顶级 Python 库

    使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机 ...

  4. gplaycli—— 用于从 GooglePlayStore 中下载和管理 Apk 文件的命令行工具

    gplaycli-- 用于从 GooglePlayStore 中下载和管理 Apk 文件的命令行工具 这个 GooglePlay市场 中 https://play.google.com/store/a ...

  5. 【AMAD】watchdog -- 用于监控文件系统的事件,并且提供了shell命令行工具

    简介 动机 作用 用法 个人评分 简介 用于监控文件系统的事件的Python库,并且提供了shell命令行工具 动机 有很多情况下,我们希望监控文件的变化,在变化之后作出一些响应. 比如flask,d ...

  6. Laravel 命令行工具之多线程同步大批量数据 DB连接混乱 解决方案

    记一次大批量数据的多进程同步 背景:因为公司的用户标识不完整,所以需要从集团同步一次用户标记数据,用户数据来源是微信,数量级为一百五十万,集团用户数量级为六百万 方案确定下来是集团开了一个查询接口,访 ...

  7. Data Science Competition中的工具汇总

    除了基础的pandas,scikit-learn,numpy,matplotlib,seaborn以外 ( 1 ) category_encoders github 属于scikit-learn co ...

  8. 使用命令行工具mysqlimport导入数据

    Usage: mysqlimport [OPTIONS] database textfile ... mysqlimport 程序是一个将以特定格式存放的文本数据(如通过“select * into ...

  9. 使用脚本+kafka自带命令行工具 统计数据写入kafka速率

    思路 每隔一段时间(比如说10秒)统计一次某topic的所有partition的最大offset值之和,这便是该topic的message总数. 然后除以间隔时间就可以粗略但方便得出 某topic的数 ...

随机推荐

  1. webpack学习之——npm的安装依赖情况

    这几天一直在研究webpack模块话打包工具,在网上的资源还是蛮丰富的,现在总结下这块的内容,需要好好的研究下,如果有问题,还请指正. 先是第一个为问题,就是npm-install --save 和n ...

  2. cronexpr任务调度

    package main import ( "github.com/gorhill/cronexpr" "fmt" "time" ) fun ...

  3. DataGrid无故多一行空白行

    DataGrid绑定datatable时, Datagrid.Itemsource=dt.DefaultView: 发现DataGRID会多处一行 解决如下: 对Datagrid的CanUserAdd ...

  4. UML时序图(Sequence Diagram)学习笔记

    什么是时序图时序图(Sequence Diagram),又名序列图.循序图,是一种UML交互图.它通过描述对象之间发送消息的时间顺序显示多个对象之间的动态协作. 让我们来看一看visio2016对时序 ...

  5. git命令入门

    http://www.cocoachina.com/ios/20160629/16855.html 译者序:这是一篇给像我这样的新手或者是熟悉图形工具的老鸟看的.仅作为快速入门的教程. git 现在的 ...

  6. JQuery--关系选择器

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. Android开源实战:使用MVP+Retrofit开发一款文字阅读APP

    文字控 使用MVP+Retrofit开发的一款文艺APP,它是一个非常优美的文字阅读应用,界面基本上符合material design设计规范. 在该项目中,我采用的是MVP架构,该架构目前在Andr ...

  8. Person Re-identification 系列论文笔记(八):SPReID

    Human Semantic Parsing for Person Re-identification Kalayeh M M, Basaran E, Gokmen M, et al. Human S ...

  9. win2003开启telnet

    1.在服务器上,cmd中输入命令services.msc打开服务窗口,找到telnet服务,先开启它的依赖服务Remote Procedure Call,在开启telnet服务. 2.本地电脑中cmd ...

  10. Codeforces 432C

    题目链接 题意: 给出一个长度为n(n<=10^5)的数组a,  数组a是数字1到n的一种排列(打乱顺序). 每次可以选择两个数(不同)进行交换, 但是交换的条件是被选择的两个数的下标之差加1应 ...