zoj 2338 The Towers of Hanoi Revisited
The Towers of Hanoi Revisited
Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge
You all must know the puzzle named ��The Towers of Hanoi��. The puzzle has three pegs and N discs of different radii, initially all disks are located on the first peg, ordered by their radii - the largest at the bottom, the smallest at the top. In a turn you may take the topmost disc from any peg and move it to another peg, the only rule says that you may not place the disc atop any smaller disk. The problem is to move all disks to the last peg making the smallest possible number of moves.
There is the legend that somewhere in Tibet there is a monastery where monks tirelessly move disks from peg to peg solving the puzzle for 64 discs. The legend says that when they finish, the end of the world would come. Since it is well known that to solve the puzzle you need to make 2N - 1 moves, a small calculation shows that the world seems to be a quite safe place for a while.
However, recent archeologists discoveries have shown that the things can be a bit worse. The manuscript found in Tibet mountains says that the puzzle the monks are solving has not 3 but M pegs. This is the problem, because when increasing the number of pegs, the number of moves needed to move all discs from the first peg to the last one following the rules described, decreases dramatically. Calculate how many moves one needs to move N discs from the first peg to the last one when the puzzle has M pegs and provide the scenario for moving the discs.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
Input file contains N and M (1 <= N <= 64, 4 <= M <= 65).
Output
On the first line output L - the number of moves needed to solve the puzzle. Next L lines must contain the moves themselves. For each move print the line of the form
move <disc-radius> from <source-peg> to <target-peg>
if the disc is moved to the empty peg or
move <disc-radius> from <source-peg> to <target-peg> atop <target-top-disc-radius>
if the disc is moved atop some other disc.
Disc radii are integer numbers from 1 to N, pegs are numbered from 1 to M.
Sample Input
1
5 4
Sample Output
13
move 1 from 1 to 3
move 2 from 1 to 2
move 1 from 3 to 2 atop
2
move 3 from 1 to 4
move 4 from 1 to 3
move 3 from 4 to 3 atop
4
move 5 from 1 to 4
move 3 from 3 to 1
move 4 from 3 to 4 atop
5
move 3 from 1 to 4 atop 4
move 1 from 2 to 1
move 2 from 2 to 4 atop
3
move 1 from 1 to 4 atop 2
汉诺塔问题,了解一个公式。记f[n][m]为n个disc,m个peg的Hanoi问题,则有dp公式f[n][m]=min{f[n-k][m-1]+2*f[k][m]}。即把上面的k个disc利用m个peg转移某个中间peg,再把下面的n-k个disc利用m-1个peg转移到目标peg,最后把上面的k个disc利用m个peg移到目标peg。dp过程记下使得f[n][m]最小的g[n][m]=k用于反向打印移动过程。
题意:给定N(1<= N <=64)个盘子和M(4<= M <= 65)根柱子,问把N个盘子从1号柱子移动到M号柱子所需要的最少步数,并且输出移动过程。
附上代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
using namespace std; typedef unsigned long long ll;
const ll INF=;
ll dp[][];
int pre[][];
int n,m;
stack<int>v[];
bool w[]; void move(int a,int b) //从a这根柱子移到b这跟柱子
{
if(v[b].empty()) printf("move %d from %d to %d\n",v[a].top(),a,b);
else printf("move %d from %d to %d atop %d\n",v[a].top(),a,b,v[b].top());
v[b].push(v[a].top());
v[a].pop();
return;
} void DFS(int ct,int a,int b,int h) //ct 表示盘子个数 a,b表示柱子标号 通过h根的柱子来进行操作
{
int i,j;
if(ct==)
{
move(a,b);
return;
}
for(i=; i<=m; i++)
if(i!=a && i!=b && !w[i]) break;
DFS(pre[ct][h],a,i,h);
w[i]=;
DFS(ct-pre[ct][h],a,b,h-);
w[i]=;
DFS(pre[ct][h],i,b,h);
} void init()
{
int i,j,k;
for(i=; i<=; i++) //最少三根柱子,才可以开始移动,从这里开始记录数据
{
dp[i][]=*dp[i-][]+;
pre[i][]=i-;
}
for(i=; i<=; i++) //柱子
{
dp[][i]=;
for(j=; j<; j++) //盘子
{
ll t=INF;
for(k=; k<j; k++) //先移走k个盘子到一个中间柱子,剩下j-k盘子移动到目标
{
if(t>dp[j-k][i-]+*dp[k][i])
{
t=dp[j-k][i-]+*dp[k][i];
pre[j][i]=k;
}
}
dp[j][i]=t;
}
}
} int main()
{
int i,j,T;
init();
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",dp[n][m]);
for(i=; i<=m; i++) while(!v[i].empty()) v[i].pop(); //初始数据为空
for(i=n; i>=; i--) v[].push(i);
memset(w,,sizeof(w));
DFS(n,,m,m);
}
return ;
}
zoj 2338 The Towers of Hanoi Revisited的更多相关文章
- ZOJ-2338 The Towers of Hanoi Revisited 输出汉诺塔的最优解移动过程
题意:给定N(1<= N <=64)个盘子和M(4<= M <= 65)根柱子,问把N个盘子从1号柱子移动到M号柱子所需要的最少步数,并且输出移动过程. 分析:设f[i][j] ...
- SGU 202 The Towers of Hanoi Revisited (DP+递归)
转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents by---cxlove 题意 :n个圆盘,m个柱子的汉诺塔输出步骤. ht ...
- SGU 202. The Towers of Hanoi Revisited
多柱汉诺塔问题. 引用自wiki百科 多塔汉诺塔问题 在有3个柱子时,所需步数的公式较简单,但对于4个以上柱子的汉诺塔尚未得到通用公式,但有一递归公式(未得到证明,但目前为止没有找到反例): 令为在有 ...
- The Towers of Hanoi Revisited---(多柱汉诺塔)
Description You all must know the puzzle named "The Towers of Hanoi". The puzzle has three ...
- [CareerCup] 3.4 Towers of Hanoi 汉诺塔
3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes ...
- POJ 1958 Strange Towers of Hanoi 解题报告
Strange Towers of Hanoi 大体意思是要求\(n\)盘4的的hanoi tower问题. 总所周知,\(n\)盘3塔有递推公式\(d[i]=dp[i-1]*2+1\) 令\(f[i ...
- POJ 1958 Strange Towers of Hanoi
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3784 Accepted: 23 ...
- POJ-1958 Strange Towers of Hanoi(线性动规)
Strange Towers of Hanoi Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 2677 Accepted: 17 ...
- ural 2029 Towers of Hanoi Strike Back (数学找规律)
ural 2029 Towers of Hanoi Strike Back 链接:http://acm.timus.ru/problem.aspx?space=1&num=2029 题意:汉诺 ...
随机推荐
- PHP相关
PHP简介 PHP超文本预处理器.是嵌入HTML文件中的服务器端脚本程序.换句话:PHP只能运行在服务器上. 一个HTML文件中,可以包含的代码:HTML代码.CSS代码.JS代码.PHP代码等. P ...
- Kryo官方文档-中文翻译
Kryo作为一个优秀的Java序列化方案,在网上能找到不少测评,但未见系统的中文入门或说明文档.官方文档是最好的学习文档.虽然英文不差,但啃下来毕竟没母语来的舒服.这里抽出时间做些翻译,以方便大家查阅 ...
- java 将word转为PDF (100%与word软件转换一样)
jdk环境:jdk_8.0.1310.11_64 (64位) 1.引入pom文件 <!-- word转pdf(依赖windows本地的wps) --> <dependency& ...
- tes..
力扣刷题 二分查找法 二分查找法又称折半查找法. 优点:比较次数少,查找速度快,平均性能好: 缺点:要求待查表为有序表,且插入删除困难. 因此,折半查找方法适用于不经常变动而查找频繁的有序列表. 首先 ...
- objectarx之判断给定的三点是否共线
bool ThreePointIsCollinear(const AcGePoint2d &pt1, const AcGePoint2d &pt2, const AcGePoint2d ...
- linux系统 (实验一)实验楼的课程笔记
实验楼的课程笔记 tab 键是命令补全 输入 tail find / 立刻卡住 这时候ctrl+c 可以终端当前指令 一些常用的指令 Ctrl+d 键盘输入结束或退出终端 Ctrl+s 暂停当前程序 ...
- Redis 源码学习之 Redis 事务Nosql
Redis事务提供了一种将多个命令请求打包,然后一次性.按照顺序地执行多个命令的机制,并且在事务执行的期间,服务器不会中断事务而去执行其他不在事务中的命令请求,它会把事务中所有的命令都执行完毕才会去执 ...
- This Product is covered by one or more of the folloWing patents
借用一下网络图片,作为描述: 原因: 启动方式使用了网络启动, 解决方案: 进入bios,修改启动方式,禁用网卡驱动,使用从硬盘启动或者从U盘启动即可.
- 【OI】快读
不必多说. #include <cstdio> #include <cstring> int read(){ ,f = ; char c = getchar(); ') { ; ...
- 如何用好消息推送(push)做APP运营
作为移动端APP产品运营最重要的运营手段,消息推送(push)被越来越多的APP厂商所重视,在信息泛滥的移动互联网时代,手机APP应用安装得越来越多,小小的手机屏幕每天收到的消息推送也越来越多,站在用 ...