POJ1797 Heavy Transportation (堆优化的Dijkstra变形)
Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight.
Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know.
Problem
You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.
Input
Output
Sample Input
1
3 3
1 2 3
1 3 4
2 3 5
Sample Output
Scenario #1:
4
大意是求点1到n所有路径里最大的最短边权值。可以用堆优化的Dijkstra跑过。不同的是这里d数组的含义以及松弛操作都有所不同。这里d[i]代表从1到i所有路径最小边里最大的边的权值。松弛条件改为if(d[y]<min(d[x],z))d[y]=min(d[x],z).
要注意的是:
1.d数组要初始化为-INF,因为要求的是d[n]让其尽可能大。
2.d[1]要初始化为INF。因为如果按照dij模板初始化d[1]为0,第一次取出的是1号点,这时候d[y]为-INF,必然小于min(d[x],z),因为d[x]在第一次等于d[1]等于0,所以最终d数组将全部为0,得不到答案。
2.pair的第一维不用加负号,因为优先队列应该先让大的出来,所以不用按照蓝书上那样让其变为小根堆。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
using namespace std;
const int N=,M=;//两倍存双向边
int head[N],ver[M],edge[M],Next[M],d[N];
bool v[N];
int n,m,tot=;
priority_queue<pair<int,int> >q;
void add(int x,int y,int z)
{
ver[++tot]=y,edge[tot]=z,Next[tot]=head[x],head[x]=tot;
}
void dijkstra()
{
memset(d,-0x3f,sizeof(d));
memset(v,,sizeof(v));
d[]=;
q.push(make_pair(,));
while(q.size())
{
int x=q.top().second;
q.pop();
if(v[x])continue;
v[x]=;
int i;
for(i=head[x];i;i=Next[i])
{
int y=ver[i];
int z=edge[i];
if(d[y]<min(d[x],z))
{
d[y]=min(d[x],z);
q.push(make_pair(d[y],y));
}
}
}
}
int main()
{
int t;
cin>>t;
int i,j,k;
for(i=;i<=t;i++)
{
tot=;
while(q.size())q.pop();
memset(head,,sizeof(head));
memset(Next,,sizeof(Next));
scanf("%d%d",&n,&m);
for(j=;j<=m;j++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
add(y,x,z);
}
dijkstra();
printf("Scenario #%d:\n",i);
cout<<d[n]<<endl;
cout<<endl;
}
}
POJ1797 Heavy Transportation (堆优化的Dijkstra变形)的更多相关文章
- poj1797 - Heavy Transportation(最大边,最短路变形spfa)
题目大意: 给你以T, 代表T组测试数据,一个n代表有n个点, 一个m代表有m条边, 每条边有三个参数,a,b,c表示从a到b的这条路上最大的承受重量是c, 让你找出一条线路,要求出在这条线路上的最小 ...
- Heavy Transportation POJ 1797 最短路变形
Heavy Transportation POJ 1797 最短路变形 题意 原题链接 题意大体就是说在一个地图上,有n个城市,编号从1 2 3 ... n,m条路,每条路都有相应的承重能力,然后让你 ...
- 堆优化的Dijkstra
SPFA在求最短路时不是万能的.在稠密图时用堆优化的dijkstra更加高效: typedef pair<int,int> pii; priority_queue<pii, vect ...
- POJ--1797 Heavy Transportation (最短路)
题目电波: POJ--1797 Heavy Transportation n点m条边, 求1到n最短边最大的路径的最短边长度 改进dijikstra,dist[i]数组保存源点到i点的最短边最大的路径 ...
- 朴素版和堆优化版dijkstra和朴素版prim算法比较
1.dijkstra 时间复杂度:O(n^2) n次迭代,每次找到距离集合S最短的点 每次迭代要用找到的点t来更新其他点到S的最短距离. #include<iostream> #inclu ...
- POJ1797 Heavy Transportation —— 最短路变形
题目链接:http://poj.org/problem?id=1797 Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K T ...
- POJ1797 Heavy Transportation 【Dijkstra】
Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 21037 Accepted: ...
- (Dijkstra) POJ1797 Heavy Transportation
Heavy Transportation Time Limit: 3000MS Memory Limit: 30000K Total Submissions: 53170 Accepted: ...
- 学习笔记·堆优化$\mathscr{dijkstra}$
嘤嘤嘤今天被迫学了这个算法--其实对于学习图论来说我内心是拒绝的\(\mathscr{qnq}\) 由于发现关于这个\(\mathscr{SPFA}\)的时间复杂度\(O(kE)\)中的\(k \ap ...
随机推荐
- goahead web 服务器
https://blog.csdn.net/xieyihua1994/article/details/74002413
- Go操作Elasticsearch
文章转自 Elasticsearch Elasticsearch 下载 https://www.elastic.co/cn/start 运行 解压后cd到解压目录 ./bin/elasticsea ...
- Go之第三方库ini
文章转自 快速开始 my.ini # possible values : production, development app_mode = development [paths] # Path t ...
- 每天进步一点点------ModelSim仿真Altera的ROM
1. 在QuartusII中生成rom的初始化文件,可以是hex,也可以是mif.MIF文件的格式很简单明了,所以我一向都是用MIF. 2.下载convert_hex2ver.dll文件,conver ...
- 使用Idea构建springmvc框架,出现no bean named 'cacheManager' is defined 错误
由于IDEA的自动补全功能非常强大,当你配置 <mvc:annotation-driven/> 后编译器会帮你自动补全上面两个配置文件约束.这个时候如果你没注意的就会爆出一个很莫名奇妙的错 ...
- codeforces div2 603 D. Secret Passwords(并查集)
题目链接:https://codeforces.com/contest/1263/problem/D 题意:有n个小写字符串代表n个密码,加入存在两个密码有共同的字母,那么说这两个密码可以认为是同一个 ...
- 对于一些stl自定义比较函数
1.unorderd_map自定义键 自定义类型 struct my_key { int num; string name; }; 1.由于unordered_map是采用哈希实现的,对于系统的类型i ...
- Yii2中事务的使用
官方是这样的 // $connection其实是数据库连接$transaction = $connection->beginTransaction(); try { $connection-&g ...
- maven的安装与使用(运行单元测试和打包等)
maven的下载与安装 maven是用于java的自动化构建工具. 1.下载: http://maven.apache.org/download.cgi 下载maven包,比如 apache-mave ...
- Hadoop架构: 流水线(PipeLine)
该系列总览: Hadoop3.1.1架构体系——设计原理阐述与Client源码图文详解 : 总览 流水线(PipeLine),简单地理解就是客户端向DataNode传输数据(Packet)和接收Dat ...