题目:

Binary Tree Maximum Path Sum

Given a binary tree, find the maximum path sum.

The path may start and end at any node in the tree.

For example:
Given the below binary tree,

       1
/ \
2 3

Return 6.

节点可能为负数,寻找一条最路径使得所经过节点和最大。路径可以开始和结束于任何节点但是不能走回头路。

这道题虽然看起来不同寻常,但是想一下,可以发现不外乎二叉树的遍历+简单的动态规划思想。

我们可以把问题拆分开:即便最后的最大路径没有经过根节点,它必然也有自己的“最高点”,因此我们只要针对所有结点,求出:如果路径把这个节点作为“最高点”,路径最长可达多少?记为max。然后在max中求出最大值MAX即为所求结果。和“求整数序列中的最大连续子序列”一样思路。

下面就是找各个“最高点”对应的max之间的关系了。

我们拿根节点为例,对于经过根节点的最大路径的计算方式为:

我们找出左子树中以左孩子为起点的最大路径长度a,和右子树中以右孩子为起点的最大路径长度b。然后这个点的 max = MAX(a+b+node.val, a+node.val, b+node.val, node.val)

因此我们定义一个函数来算上面的a或者b,它的参数是一个节点,它的返回值是最大路径长度,但是这个路径的起点必须是输入节点,而且路径必须在以起点为根节点的子树上。

那么函数func(node)的return值可以这样定义:return MAX(func(node.left)+node.val, func(node.right)+node.val, node.val)

终止条件是node == null,直接返回0。

接着我们发现上述计算max 和 求出MAX的过程完全可以放到func(node) 里去。

按照这个思路的代码,maxPathSumCore 就是上面 func(node)的实现:

/**
* Definition for binary tree
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int maxPathSum(TreeNode *root) {
maxPathSumCore(root);
return MAX;
}
int maxPathSumCore(TreeNode *node) {
if(NULL == node) return ;
int a = maxPathSumCore(node -> left);
int b = maxPathSumCore(node -> right);
if((a+b+node->val) > MAX) MAX = (a+b+node->val);
if((a+node->val) > MAX) MAX = (a+node->val);
if((b+node->val) > MAX) MAX = (b+node->val);
if(node->val > MAX) MAX = node->val;
int maxViaThisNode = ((a + node->val) > node->val ? (a + node->val) : node->val);
return (maxViaThisNode > (b + node->val) ? maxViaThisNode : (b + node->val));
}
private:
int MAX= -;
};

时间复杂度 O(n),n为总节点数。

二叉树系列 - 二叉树里的最长路径 例 [LeetCode] Binary Tree Maximum Path Sum的更多相关文章

  1. [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  2. [Leetcode] Binary tree maximum path sum求二叉树最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  3. [LeetCode] Binary Tree Maximum Path Sum(最大路径和)

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  4. LeetCode Binary Tree Maximum Path Sum 二叉树最大路径和(DFS)

    题意:给一棵二叉树,要求找出任意两个节点(也可以只是一个点)的最大路径和,至少1个节点,返回路径和.(点权有负的.) 思路:DFS解决,返回值是,经过从某后代节点上来到当前节点且路径和最大的值.要注意 ...

  5. LeetCode 124. 二叉树中的最大路径和(Binary Tree Maximum Path Sum)

    题目描述 给定一个非空二叉树,返回其最大路径和. 本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列.该路径至少包含一个节点,且不一定经过根节点. 示例 1: 输入: [1,2,3] 1 ...

  6. [LeetCode] 124. Binary Tree Maximum Path Sum 求二叉树的最大路径和

    Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...

  7. 75.Binary Tree Maximum Path Sum(二叉树的最大路径和)

    Level:   Hard 题目描述: Given a non-empty binary tree, find the maximum path sum. For this problem, a pa ...

  8. LeetCode 124. Binary Tree Maximum Path Sum 二叉树中的最大路径和 (C++/Java)

    题目: Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as ...

  9. [Swift]LeetCode124. 二叉树中的最大路径和 | Binary Tree Maximum Path Sum

    Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...

随机推荐

  1. Js全反选DataGrid

    // **************************************************************** // // function Trim(value) // -- ...

  2. php性能优化--opcache

    一.OPcache是什么? OPcache通过将 PHP 脚本预编译的字节码存储到共享内存中来提升 PHP 的性能, 存储预编译字节码的好处就是 省去了每次加载和解析 PHP 脚本的开销. PHP 5 ...

  3. PHPCMS v9表单向导中怎么加入验证码

    表单想到比较简单,所以没有加入验证码的功能.网上的类似教程又大多数不准确.所以亲自测试了一下,发现下面的方法是可用的.希望对有需求的朋友们有所帮助. 1.首先是调用表单的页面加入验证码.表单js调用模 ...

  4. Android - 按钮组件详解

    总结了Android中常用的按钮用法 示例源码下载地址 : -- CSDN :  http://download.csdn.net/detail/han1202012/6852091 -- GitHu ...

  5. iOS- 网络访问两种常用方式【GET & POST】实现的几个主要步骤

    1.前言 上次,在博客里谈谈了[GET & POST]的区别,这次准备主要是分享一下自己对[GET & POST]的理解和实现的主要步骤. 在这就不多废话了,直接进主题,有什么不足的欢 ...

  6. iOS开发Interface Builder技巧

    1.使view的Size与view中的Content相适应:选中任意的一个view,然后Editor->Size to Fit Content,或者简单的按 ⌘=接着就会按照下面的规则对选中vi ...

  7. JTS空间分析工具包(GIS开源)学习 JAVA

    JST空间分析工具包是一套JAVA API,提供一系列的空间数据分析操作.最近开发项目刚好需要用到,上网搜资料也少,就自己写下来记录一下.C++版本的拓扑分析开源工具叫:geos:.NET版本的拓扑分 ...

  8. 老生常谈-从输入url到页面展示到底发生了什么

    来自:咸鱼老弟 - 博客园 链接:http://www.cnblogs.com/xianyulaodi/p/6547807.html

  9. wine update错误 "the cache has no package" error when wine update is available

    网址:https://bugs.launchpad.net/pipelight/+bug/1318321/

  10. C# #pragma warning disable/restore

    #pragma warning 可以启用或禁用特定警告. 语法 #pragma warning disable warning-list #pragma warning restore warning ...