题意:

小于等于n的所有数中1的出现次数

分析:

数位DP

预处理dp[i][j]存 从1~以j开头的i位数中有几个1,那么转移方程为:

if(j == 1) dp[i][j] = dp[i-1][9]*2+pow(10,i-1);
else dp[i][j] = dp[i-1][9]+dp[i][j-1];

然后注意下对于每个询问统计的时候如果当前位为1需要额外加上他后面所有位数的个数,就是n%pow(10,i-1);

这样总复杂度log(n)*10

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MAXN = ;
int dp[MAXN][];///dp[i][j]从1~以j开头的i位数中有几个1
int bit[MAXN]; int main()
{
#ifdef SHY
freopen("d:\\1.txt", "r", stdin);
#endif
int tmp = ;
rep(i,,) dp[][i] = ;
repe(i,,)
{
rep(j,,)
{
if(j == ) dp[i][j] = dp[i-][]+tmp;
else dp[i][j] = dp[i][j-];
dp[i][j] += dp[i-][];
}
tmp *= ;
}
int n,cnt = ;
scanf("%d", &n);
tmp = n;
while(tmp)
{
bit[++cnt] = tmp%;
tmp /= ;
}
int ans = ,sum = ;
per(i,cnt,)
{
if(bit[i] == ) continue;
if(bit[i] == )
ans += dp[i-][]++n%((int)pow(,i-));
else
ans += dp[i][bit[i]-];
}
printf("%d\n", ans);
return ;
}

2.

解题关键:数位dp,对每一位进行考虑,通过过程得出每一位上1出现的次数

1位数的情况:

在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。

2位数的情况:

N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。

N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。

由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。

3位数的情况:

N=123

个位出现1的个数为13:1,11,21,…,91,101,111,121

十位出现1的个数为20:10~19,110~119

百位出现1的个数为24:100~123

我们可以继续分析4位数,5位数,推导出下面一般情况:

假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。

如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。

如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。

        如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int solve(int n){
int cnt=,i=,be,af,cur;
while(n/i){
be=n/(i*);
af=n-n/i*i;
cur=n/i%; if(cur>) cnt+=(be+)*i;
else if(cur<) cnt+=be*i;
else cnt+=be*i++af;
i*=;
}
return cnt;
}
int main(){
int n;
cin>>n;
int ans=solve(n);
cout<<ans<<endl;
return ;
}

参考:http://www.cnblogs.com/elpsycongroo/p/6917114.html

https://www.dawxy.com/article/51nod1009-%E6%95%B0%E5%AD%971%E7%9A%84%E6%95%B0%E9%87%8F%E6%95%B0%E4%BD%8Ddp/

51Nod 1009 数字1的个数 | 数位DP的更多相关文章

  1. 51nod 1009 - 数字1的数量 - [数位DP][模板的应用以及解释]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 基准时间限制:1 秒 空间限制:131072 KB 给 ...

  2. 51nod 1009 数字1的数量 数位dp

    1009 数字1的数量 基准时间限制:1 秒 空间限制:131072 KB   给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数.   例如:n = 12,包含了5个1 ...

  3. 1009 数字1的数量 数位dp

    1级算法题就这样了,前途渺茫啊... 更新一下博客,我刚刚想套用数位dp的模板,发现用那个模板也是可以做到,而且比第二种方法简单很多 第一种方法:我现在用dp[pos][now]来表示第pos位数字为 ...

  4. 51nod 1042 数字0-9的数量 数位dp

    1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 给出一段区间a-b,统计这个区间内0-9出现的次数.   比如 10-1 ...

  5. 51nod 1009 数字1的数量(数位dp模板)

    给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1.   数位dp的模板题   ...

  6. 51nod 1009 数字1的数量

    1009 数字1的数量   给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数.   例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5 ...

  7. 计算1到N中各个数字出现的次数 --数位DP

    题意:给定一个数n,问从1到n中,0~9这10个数字分别出现了多少次.比如366这个数,3出现了1次,6出现了2次. 题解:<剑指offer>P174:<编程之美>P132 都 ...

  8. ☆ [HDU2089] 不要62「数位DP」

    类型:数位DP 传送门:>Here< 题意:问区间$[n,m]$的数字中,不含4以及62的数字总数 解题思路 数位DP入门题 先考虑一般的暴力做法,整个区间扫一遍,判断每个数是否合法并累计 ...

  9. Codeforces D. Little Elephant and Interval(思维找规律数位dp)

    题目描述: Little Elephant and Interval time limit per test 2 seconds memory limit per test 256 megabytes ...

随机推荐

  1. string && 字符数组

    一.string 1. 使用字符串字面值初始化string对象 如:string s1 = "hiya"; string s2("hiya"); 该字面值的最后 ...

  2. Pipeline组测试说明

    PIPELINE组测试报告 前言:我们组与学霸系统的其他两个小组共同合作开发,组成学霸系统的团体工作.作为学霸系统的一环,我们组起到承上启下的作用,因此,面向群体以及功能实现都是为给下一个组的工作做好 ...

  3. Android - TabHost 选项卡功能用法详解

    TabHost效果图 : 源码下载地址 : http://download.csdn.net/detail/han1202012/6845105        . 作者 :万境绝尘  转载请注明出处  ...

  4. 分页查询es时,返回的数据不是自己所期望的问题

    在进行es分页查询时,一般都是用sql语句转成es查询字符串,在项目中遇到过不少次返回的数据不是自己所期望的那样时,多半原因是自己的sql拼接的有问题. 解决办法:务必要保证自己的sql语句拼接正确.

  5. 在LaTex中插入电路图的方法(插入图片)

    主要的需求是要在文档中插入电路图. 有两种方法,一种是直接在LaTex中绘制电路图,使用的库主要是circ和circuitikz 另一种是在其他软件上绘制电路图,转成特定图像格式后,在Latex中插入 ...

  6. hibernate映射表

    <?xml version="1.0"?>   <!DOCTYPE hibernate-mapping PUBLIC        "-//Hibern ...

  7. SonarQube安装

    要求 至少1G以上内存,推荐为2G Java:Oracle JRE 7u75+,OpenJDK 7u75+ 数据库: Microsoft SQL Server 2008/2012/2014 MySQL ...

  8. /proc/meminfo中meminfo的计算方法

    /proc/meminfo里的可使用内存的计算没有那么简单,并不是简单的free和page cache的加和 free + pagecache 以此为基准 但是需要减去一些内存:首先要减去系统预留的内 ...

  9. Mysql查询优化从入门到跑路(二)数据库查询优化技术总揽

    五大优化技术 1.查询重用 查询重用是指尽可能利用先前的执行结果,以达到节约查询计算全过程的时间并减少资源消耗的目的. 目前查询重用技术主要集中在两个方面:     1)查询结果重用         ...

  10. MyBatis原理简介

    1.什么是 MyBatis ? MyBatis 是一款优秀的持久层框架,它支持定制化 SQL.存储过程以及高级映射.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyB ...