51Nod 1009 数字1的个数 | 数位DP

题意:
小于等于n的所有数中1的出现次数
分析:
数位DP
预处理dp[i][j]存 从1~以j开头的i位数中有几个1,那么转移方程为:
if(j == 1) dp[i][j] = dp[i-1][9]*2+pow(10,i-1);
else dp[i][j] = dp[i-1][9]+dp[i][j-1];
然后注意下对于每个询问统计的时候如果当前位为1需要额外加上他后面所有位数的个数,就是n%pow(10,i-1);
这样总复杂度log(n)*10
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i,a,n) for(int i = a; i < n; i++)
#define repe(i,a,n) for(int i = a; i <= n; i++)
#define per(i,n,a) for(int i = n; i >= a; i--)
#define clc(a,b) memset(a,b,sizeof(a))
const int INF = 0x3f3f3f3f, MAXN = ;
int dp[MAXN][];///dp[i][j]从1~以j开头的i位数中有几个1
int bit[MAXN]; int main()
{
#ifdef SHY
freopen("d:\\1.txt", "r", stdin);
#endif
int tmp = ;
rep(i,,) dp[][i] = ;
repe(i,,)
{
rep(j,,)
{
if(j == ) dp[i][j] = dp[i-][]+tmp;
else dp[i][j] = dp[i][j-];
dp[i][j] += dp[i-][];
}
tmp *= ;
}
int n,cnt = ;
scanf("%d", &n);
tmp = n;
while(tmp)
{
bit[++cnt] = tmp%;
tmp /= ;
}
int ans = ,sum = ;
per(i,cnt,)
{
if(bit[i] == ) continue;
if(bit[i] == )
ans += dp[i-][]++n%((int)pow(,i-));
else
ans += dp[i][bit[i]-];
}
printf("%d\n", ans);
return ;
}
2.
解题关键:数位dp,对每一位进行考虑,通过过程得出每一位上1出现的次数
1位数的情况:
在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。
2位数的情况:
N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。
N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。
由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。
3位数的情况:
N=123
个位出现1的个数为13:1,11,21,…,91,101,111,121
十位出现1的个数为20:10~19,110~119
百位出现1的个数为24:100~123
我们可以继续分析4位数,5位数,推导出下面一般情况:
假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。
如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。
如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。
如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int solve(int n){
int cnt=,i=,be,af,cur;
while(n/i){
be=n/(i*);
af=n-n/i*i;
cur=n/i%; if(cur>) cnt+=(be+)*i;
else if(cur<) cnt+=be*i;
else cnt+=be*i++af;
i*=;
}
return cnt;
}
int main(){
int n;
cin>>n;
int ans=solve(n);
cout<<ans<<endl;
return ;
}
参考:http://www.cnblogs.com/elpsycongroo/p/6917114.html
51Nod 1009 数字1的个数 | 数位DP的更多相关文章
- 51nod 1009 - 数字1的数量 - [数位DP][模板的应用以及解释]
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 基准时间限制:1 秒 空间限制:131072 KB 给 ...
- 51nod 1009 数字1的数量 数位dp
1009 数字1的数量 基准时间限制:1 秒 空间限制:131072 KB 给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1 ...
- 1009 数字1的数量 数位dp
1级算法题就这样了,前途渺茫啊... 更新一下博客,我刚刚想套用数位dp的模板,发现用那个模板也是可以做到,而且比第二种方法简单很多 第一种方法:我现在用dp[pos][now]来表示第pos位数字为 ...
- 51nod 1042 数字0-9的数量 数位dp
1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-1 ...
- 51nod 1009 数字1的数量(数位dp模板)
给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1. 数位dp的模板题 ...
- 51nod 1009 数字1的数量
1009 数字1的数量 给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5 ...
- 计算1到N中各个数字出现的次数 --数位DP
题意:给定一个数n,问从1到n中,0~9这10个数字分别出现了多少次.比如366这个数,3出现了1次,6出现了2次. 题解:<剑指offer>P174:<编程之美>P132 都 ...
- ☆ [HDU2089] 不要62「数位DP」
类型:数位DP 传送门:>Here< 题意:问区间$[n,m]$的数字中,不含4以及62的数字总数 解题思路 数位DP入门题 先考虑一般的暴力做法,整个区间扫一遍,判断每个数是否合法并累计 ...
- Codeforces D. Little Elephant and Interval(思维找规律数位dp)
题目描述: Little Elephant and Interval time limit per test 2 seconds memory limit per test 256 megabytes ...
随机推荐
- 使用Response.Write实现在页面的生命周期中前后台的交互
Response.Write()方法非常的常见,也很普通,就是向http output中输出一string.其输出的内容位于页面的最顶端,常用来实现显示一些页面消息框等逻辑. 一般来说,在页面的整个生 ...
- Python高级编程-使用SQLite
SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成. Python就 ...
- HDU 3268/POJ 3835 Columbus’s bargain(最短路径+暴力枚举)(2009 Asia Ningbo Regional)
Description On the evening of 3 August 1492, Christopher Columbus departed from Palos de la Frontera ...
- 学霸系统UI项目功能说明书 v1.0版本
发布人员:软件工程实践小队. 发布内容:学霸系统UI项目说明书. 版本:学霸v1.0版本. 学霸系统UI项目说明书 v1.0版本分为以下部分: Part 1:用户须知: Part 2:功能实现: Pa ...
- 链表相加(Add Two Numbers)
描述: 给定两个非空的链表,表示两个非负整数.数字以相反的顺序存储,每个节点包含一个数字.添加两个数字并将其作为链表返回. 您可以假设两个数字不包含任何前导零,除了数字0本身. 输入:(2 - > ...
- 我爱C语言
各位同志们好,我是来自计算机系的谢畅,我是一个平时看起来高冷其实很逗比的人,我的爱好有很多但只是会一些基础比如游泳,篮球,听听音乐什么的.我的特长是弹吉他虽然弹得不是很溜,我还喜欢朗诵.刚开始我并不是 ...
- python 爬虫 伪装
#coding=utf-8 import requests def requests_view(response): import webbrowser requests_url = response ...
- SFTPHelper
public class SFTPHelper { #region 字段或属性 private readonly SftpClient _sftp; /// <summary> /// S ...
- dev_queue_xmit 发生了什么?skb还会在哪里缓存
见 codebox/net/qdisk/xmit.log中保存了一份记录 调用关系 sch_direct_xmit --> dev_hard_start_xmit --> xmit_one ...
- 【.Net】浅谈C#中的值类型和引用类型
在C#中,值类型和引用类型是相当重要的两个概念,必须在设计类型的时候就决定类型实例的行为.如果在编写代码时不能理解引用类型和值类型的区别,那么将会给代码带来不必要的异常.很多人就是因为没有弄清楚这两个 ...