Link:

Codeforces 1053C 传送门

Solution:

先推出一个结论:

最后必有一个点不动且其为权值上最中间的一个点

证明用反证证出如果不在中间的点必有一段能用代价少的替代多的

这样问题转换为求出区间第一个大于权值和一半的点,并求结果

如果只考虑半边的结果为$\sum_{i=1}^{mid} (pos[mid]-pos[i]-(mid-i))*w[i]$

将$pos[i]$修改为$pos[i]-i$之后维护$\sum pos[i]*w[i]$的和即可

以上操作可以用两颗线段树来维护

注意:

1、维护$w[i]$时不能取模!

2、对于求权值中间点可以二分+树状数组也可以直接在线段树上二分

线段树上二分时注意如果已经在区间内查询值要不断更新

Code:

#include <bits/stdc++.h>

using namespace std;
#define X first
#define Y second
#define pb push_back
#define mid ((l+r)>>1)
#define lc k<<1,l,mid
#define rc k<<1|1,mid+1,r
typedef double db;
typedef long long ll;
typedef pair<int,int> P;
const int MAXN=5e5+,INF=<<,MOD=1e9+; struct SGT
{
ll seg[MAXN<<];
//分清何时要取模
void Update(int a,ll x,int f,int k,int l,int r)
{
if(l==r)
{seg[k]+=x;if(f) seg[k]%=MOD;return;}
if(a<=mid) Update(a,x,f,lc);
else Update(a,x,f,rc);
seg[k]=seg[k<<]+seg[k<<|];
if(f) seg[k]%=MOD;
}
ll Query(int a,int b,int f,int k,int l,int r)
{
if(a<=l&&r<=b) return seg[k];
ll ret=;
if(a<=mid) ret+=Query(a,b,f,lc);
if(b>mid) ret+=Query(a,b,f,rc);
return f?ret%MOD:ret;
}
//注意线段树二分的处理及此处的引用
int Find(int a,int b,ll &x,int k,int l,int r)
{
if(a<=l&&r<=b)
{
if(seg[k]<x){x-=seg[k];return INF;}
if(l==r) return l;
if(x<=seg[k<<]) return Find(a,b,x,lc);
else{x-=seg[k<<];return Find(a,b,x,rc);}
}
int ret=INF;
if(a<=mid)
ret=min(ret,Find(a,b,x,lc));
if(b>mid&&ret==INF)
ret=min(ret,Find(a,b,x,rc));
return ret;
}
}sw,sm;
int n,q,x,y,pos[MAXN],w[MAXN]; int main()
{
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++)
scanf("%d",&pos[i]),pos[i]-=i;
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
sw.Update(i,w[i],,,,n);
sm.Update(i,1ll*w[i]*pos[i],,,,n);
} while(q--)
{
scanf("%d%d",&x,&y);
if(x<)
{
x=-x;
sw.Update(x,-w[x],,,,n);
sm.Update(x,-1ll*w[x]*pos[x],,,,n);
w[x]=y;
sw.Update(x,w[x],,,,n);
sm.Update(x,1ll*w[x]*pos[x],,,,n);
}
else
{
//此时不能取模
ll sum=(sw.Query(x,y,,,,n)+)/;
int p=sw.Find(x,y,sum,,,n);
ll t1=(sw.Query(x,p,,,,n)*pos[p]%MOD-sm.Query(x,p,,,,n)+MOD)%MOD;
ll t2=(-sw.Query(p+,y,,,,n)*pos[p]%MOD+sm.Query(p+,y,,,,n)+MOD)%MOD;
printf("%lld\n",(t1+t2)%MOD);
}
}
return ;
}

[Codeforces 1053C] Putting Boxes Together的更多相关文章

  1. Codeforces 1053C Putting Boxes Together 树状数组

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1053C.html 题目传送门 - CF1053C 题意 有 $n$ 个物品,第 $i$ 个物品在位置 $a ...

  2. 2018.09.24 codeforces 1053C. Putting Boxes Together(线段树)

    传送门 就是让你维护动态的区间带权中位数. 然而昨晚比赛时并没有调出来. 想找到带权中位数的中点可以二分(也可以直接在线段树上找). 也就是二分出第一个断点,使得断点左边的和恰好大于或等于断点右边的和 ...

  3. Codeforces 1053 C - Putting Boxes Together

    C - Putting Boxes Together 思路: 求带权中位数 用树状数组维护修改 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) ...

  4. CodeForces 1058 F Putting Boxes Together 树状数组,带权中位数

    Putting Boxes Together 题意: 现在有n个物品,第i个物品他的位置在a[i],他的重量为w[i].每一个物品移动一步的代价为他的w[i].目前有2种操作: 1. x y 将第x的 ...

  5. Putting Boxes Together CodeForces - 1030F (带权中位数)

    #include <iostream> #include <algorithm> #include <cstdio> #include <math.h> ...

  6. Codeforces 488B - Candy Boxes

    B. Candy Boxes 题目链接:http://codeforces.com/problemset/problem/488/B time limit per test 1 second memo ...

  7. Educational Codeforces Round 31- D. Boxes And Balls

    D. Boxes And Balls time limit per test2 seconds memory limit per test256 megabytes 题目链接:http://codef ...

  8. [CF1053C]Putting Boxes Together(线段树)

    http://codeforces.com/blog/entry/62013 两个结论: 1.一定有一个箱子不用动. 2.不动的箱子一定是加权前缀和为S/2的那个. 1显然,2由1易得. 于是问题变为 ...

  9. CF1030F Putting Boxes Together

    昨晚的比赛题.(像我这种蒟蒻只能打打div2) 题意 给你$n$个物品,每一个物品$i$,有一个权值$w_i$和一个位置$a_i$,定义移动一个物品$i$到位置$t$的代价为$w_i * \left ...

随机推荐

  1. 【洛谷 P3809】 【模板】后缀排序

    题目链接 先占个坑,以后再补. \(SA\)的总结肯定是要写的. 等理解地深入一点再补. #include <cstdio> #include <cstring> const ...

  2. Problem B. Harvest of Apples(杭电2018年多校+组合数+逆元+莫队)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6333 题目: 题意:求C(n,0)+C(n,1)+……+C(n,m)的值. 思路:由于t和n数值范围太 ...

  3. 在电脑中配置adb

    在环境变量的系统变量path中添加SDK中platform_tools和tools的路径 如果出现version说明配置成功

  4. (转)LSI SAS 1068E Raid CentOS 5.5 安装实例浪潮NF5220系列 分类: linux

    新来了一批服务器,全都是清一色的国产服务器,相同的阵列卡,令人头疼的是Linux标准内核不包含该raid驱动,需要单独安装,如果是新升级内核,肯定需要编译进去该raid驱动.一.先把主板自带的驱动光盘 ...

  5. win10安装提示“我们无法创建新的分区”

    今日于笔记本安装win10时突然出现提示:我们无法创建新的分区.网上搜了不少建议,尝试了都无果. 由于我的笔记本是固态硬盘与机械硬盘混合,所以情况可能更加特殊. 最后成功的方法是: 1. 先将Win1 ...

  6. 图论-最小生成树-Kruskal算法

    有关概念: 最小生成树:在连通图G中,连接图G所有顶点且总权最小的边构成的树 思路: 首先对边按权从小到大排序,紧接着枚举每一条边,如果两个结点的祖先结点不同(并查集),则连上此边,直到边数等于结点数 ...

  7. 小程序2(JSSDK,ECS搭建ftp服务器)

    JSSDK 开发步骤 绑定安全域名(域名绑定给任意一个公众号) 引入js 权限验证 wx.config({}) ready 所有的开发写在ready中 error 分享接口 onMenuShareTi ...

  8. js对页面对float类型的数据格式化处理

    <script>        document.write(parseFloat(<s:property value="assureterm"/>)); ...

  9. MYSQL表中向SET类型的字段插入值时值之间不能有空格

    MYSQL 中有一种数据类型是 SET,首先我们查看一个包含 SET 类型字段的表结构: 接下来我们向表中插入数据: 按照上面的语句插入数据发现报错了,于是去掉了插入值之间的空格,然后插入成功:

  10. 用指定jdk执行jar包

    在运行jar包前执行以下命令,作用是在当前命令行窗口作用域内修改环境变量: export JAVA_HOME=/root/jiabao.gao/Hbase2Redis-1.0.0-SNAPSHOT/j ...