【bzoj1774-过路费】floyd+排序
题意:n个点,m条双向边,每个点有权值c[i],每条边有权值a[i].d,一条路径的费用=每条边的权值和+各个点的权值的最大值,即sigma(a[i].d)+max(c[i])。q个询问,问x到y的最小费用。n<=250,m<=10000.
题解:
for(int k=;k<=n;k++)
{
int x=p[k].id;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int t0=maxx(w[i],w[x]),t1=maxx(w[x],w[j]);
dis[i][j]=minn(dis[i][j],dis[i][x]+dis[x][j]-t0-t1+maxx(t0,t1));
}
}
点按ci排序,k循环按点从小到达循环,floyd的三重循环中,k限定了当前任意的i到j的最短路径都是由1~k所更新的,也就是i到j的路径中不经过c[x]>c[k]的点。所以我们可以知道当前更新dis[i][j]的dis[i][k]和dis[k][j]这两条路径中点权的最大值分别是什么。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<deque>
using namespace std; const int N=,INF=(int)1e9;
int n,m,Q;
int w[N],dis[N][N];
struct node{
int id,d;
}p[N]; int minn(int x,int y){return x<y ? x:y;}
int maxx(int x,int y){return x>y ? x:y;}
bool cmp(node x,node y){return x.d<y.d;} void floyd()
{
for(int k=;k<=n;k++)
{
int x=p[k].id;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
int t0=maxx(w[i],w[x]),t1=maxx(w[x],w[j]);
dis[i][j]=minn(dis[i][j],dis[i][x]+dis[x][j]-t0-t1+maxx(t0,t1));
}
}
} int main()
{
// freopen("a.in","r",stdin);
freopen("toll.in","r",stdin);
freopen("toll.out","w",stdout);
scanf("%d%d%d",&n,&m,&Q);
int x,y,d;
for(int i=;i<=n;i++)
{
scanf("%d",&w[i]);
p[i].id=i;p[i].d=w[i];
}
sort(p+,p++n,cmp);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
{
if(i==j) dis[i][j]=w[i];
else dis[i][j]=INF;
}
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&d);
dis[x][y]=minn(dis[x][y],d+maxx(w[x],w[y]));
dis[y][x]=minn(dis[y][x],d+maxx(w[x],w[y]));
}
floyd();
// for(int i=1;i<=n;i++)
// for(int j=1;j<=n;j++)
// printf("dis %d %d = %d\n",i,j,dis[i][j]);
for(int i=;i<=Q;i++)
{
scanf("%d%d",&x,&y);
printf("%d\n",dis[x][y]);
}
return ;
}
【bzoj1774-过路费】floyd+排序的更多相关文章
- bzoj 1774: [Usaco2009 Dec]Toll 过路费【排序+Floyd】
非常迷的一道题啊 我觉得挺对的版本只得了30 总之就是Floyd·改,开两个数组,一个是d[i][j]就是普通的只有边权的最短路,a[i][j]是题目要求的那种 具体改的地方是把枚举中转点的地方把中转 ...
- USACO 2009 Dec cow toll paths 过路费-floyd
这道题首先要明确一点,那就是当你从一个点走到自己时,也是需要花费这个点点权值的费用.这个点卡了我两次QWQ 然后我比较喜欢分两步搞: 首先,我们利用floyd的一个性质:就是在更新其他点之间的路线时要 ...
- Floyd | | jzoj[1218] | | [Usaco2009 Dec]Toll 过路费 | | BZOJ 1774 | | 我也不知道该怎么写
写在前面:老师说这一道题是神题,事实上确实如此,主要是考察对Floyd的理解 ******************************题目.txt************************* ...
- BZOJ1774[USACO 2009 Dec Gold 2.Cow Toll Paths]——floyd
题目描述 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫约翰上交过路费 ...
- bzoj 1774: [Usaco2009 Dec]Toll 过路费 ——(改)floyd
Description 跟所有人一样,农夫约翰以着宁教我负天下牛,休叫天下牛负我的伟大精神,日日夜夜苦思生 财之道.为了发财,他设置了一系列的规章制度,使得任何一只奶牛在农场中的道路行走,都 要向农夫 ...
- [ACM_模拟] POJ 1094 Sorting It All Out (拓扑排序+Floyd算法 判断关系是否矛盾或统一)
Description An ascending sorted sequence of distinct values is one in which some form of a less-than ...
- POJ3687 Labeling Balls(拓扑排序\贪心+Floyd)
题目是要给n个重量1到n的球编号,有一些约束条件:编号A的球重量要小于编号B的重量,最后就是要输出字典序最小的从1到n各个编号的球的重量. 正向拓扑排序,取最小编号给最小编号是不行的,不举出个例子真的 ...
- Sorting It All Out (拓扑排序+floyd)
An ascending sorted sequence of distinct values is one in which some form of a less-than operator is ...
- 拓扑排序 +Floyd(poj 1094)
题目:Sorting It All Out 题意:字母表前n个字母,有m组他们中的大小关系,判断n个字母是否构成唯一序列: 1.Sorted sequence determined after xxx ...
随机推荐
- BluetoothSocket详解
一. BluetoothSocket简介 1. 简介 客户端与服务端 : BluetoothSocket 和 BluetoothServerSocket 类似于Java中的套接字的 Socket 和 ...
- JavaScript初探系列之日期对象
时间对象是一个我们经常要用到的对象,无论是做时间输出.时间判断等操作时都与这个对象离不开.它是一个内置对象——而不是其它对象的属性,允许用户执行各种使用日期和时间的过程. 一 Date 日期对象 ...
- ejabberd学习1
ejabberd是XMPP协议的一个实现,对大家的另一个意义就是,可以通过ejabberd来学习erlang. 1.从源码安装ejabberd. 可以参考ejabberd 简明配置.这个博文包括了安装 ...
- (转)centos6.5下Zabbix系列之Zabbix安装搭建及汉化
最近在研究zabbix,在整理完成之后就有了写一下总结博客的想法,在我研究zabbix的时候给我很大帮助的是it你好,博客地址 http://itnihao.blog.51cto.com/他做的zab ...
- C# 泛型和委托
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- RPC架构-美团,京东面试题目
RPC(Remote Procedure Call) RPC服务 从三个角度来介绍RPC服务:分别是RPC架构,同步异步调用以及流行的RPC框架. RPC架构 先说说RPC服务的基本架构吧.允许我可耻 ...
- JavaScript 语句标识符,变量周期,常见的HTML事件
语句 描述 break 用于跳出循环. catch 语句块,在 try 语句块执行出错时执行 catch 语句块. continue 跳过循环中的一个迭代. do ... while 执行一个语句块, ...
- 【nginx】nginx:利用负载均衡原理实现代码的热部署和灰度发布
事情起因很简单,代码的改动量很大.而且刚接手服务器,对原有的代码进行了一定程度的重构.虽然在测试服务器上做了较多的测试工作,但是直接将代码送入生产环境还是不放心,万一配置出问题服务直接崩溃怎么解?万一 ...
- BZOJ 2326 数学作业(分段矩阵快速幂)
实际上,对于位数相同的连续段,可以用矩阵快速幂求出最后的ans,那么题目中一共只有18个连续段. 分段矩阵快速幂即可. #include<cstdio> #include<iostr ...
- 新浪云部署java web程序 注意事项
在新浪云新手指南里有部署java的示例,但是对一个新手来说难免会有一些地方犯错,折腾了好长时间才把自己的java web部署到了新浪云.这里主要写一些我遇到的问题与第一次使用新浪云的朋友分享一下. 首 ...