dp优化-四边形不等式(模板题:合并石子)
学习博客:https://blog.csdn.net/noiau/article/details/72514812
看了好久,这里整理一下证明
方程形式:dp(i,j)=min(dp(i,k)+dp(k+1,j))+cost(i,j) O(n^3)
四边形不等式:将其优化为O(n^2)
1.四边形不等式
a<b<=c<d
f(a,c)+f(b,d)<=f(b,c)+f(a,d)交叉小于包含
则对于i<i+1<=j<j+1
f(i,j)+f(i+1,j+1)<=f(i+1,j)+f(i,j+1)
f(i,j)-f(i+1,j)<=f(i,j+1)-f(i+1,j+1)
令g(j)=f(i,j)-f(i+1,j),则g(j)递增
2.若cost(i,j)有凸性,则dp(i,j)也有凸性
只需要证明对任意i<i+1<=j<j+1,有dp(i,j)+dp(i+1,j)<=dp(i+1,j)+dp(i,j+1)
设dp(i+1,j)取最优解的k=x,dp(i,j+1)取最优解的k=y
即要证:dp(i,j)+dp(i+1,j)<=dp(i,y)+dp(y+1,j+1)+dp(i+1,x)+dp(x+1,j)+cost(i,j+1)+cost(i+1,j)(1)
令A=dp(i,y)+dp(y+1,j+1)+dp(i+1,x)+dp(x+1,j);
由于dp(i,j)的最优解不一定为k=x,则dp(i,j)<=dp(i,x)+dp(x+1,y)+cost(i,j)
同理由于dp(i+1,j)的最优解不一定为k=y,则dp(i+1,j)<=dp(i+1,y)+dp(y+1,j)+cost(i+1,j)
(1)式可化为:
dp(i,j)+dp(i+1,j)<=A+cost(i,j)+cost(i+1,j)<=A+cost(i,j+1)+cost(i+1,j)
由cost的凸性可知成立,故dp(i,j)也有凸性
3.证明决策的单调性
设s(i,j)表示dp(i,j)最优时的k值
要证:s(i,j-1)<=s(i,j)<=s(i+1,j)
先证s(i,j-1)<=s(i,j):
设y=s(i,j-1),对任意x满足x<=y<j-1<j,有x+1<=y+1<=j-1<j
由四边形不等式:dp(x+1,j-1)+dp(y+1,j)<=dp(x+1,j)+dp(y+1,j-1)
令A=dp(i,x)+cost(i,j-1)+dp(i,y)+cost(i,j)
两边同时加上A
化简得到:dp(i,j-1)(k=x时的值)+dp(i,j)(k=y)<=dp(i,j)(k=x)+dp(i,j-1)(k=y)
移项:dp(i,j-1)(k=x)-dp(i,j-1)(k=y)<=dp(i,j)(k=x)-dp(i,j)(k=y)
由于k=y时dp(i,j-1)取最小值,则左边>=0,即dp(i,j)(k=x)>=dp(i,j)(k=y)
也就是说,对于dp(i,j),任意一个k=x<y都不如k=y优。
故s(i,j-1)<=s(i,j)
另一边同理(不证了)
那么关键就在于枚举k的部分
//s(i,j-1)<=s(i,j)<=s(i+1,j)
for(int i=n;i>=;i--)
(int j=i+;j<=n;j++)
{
int d=INF,id=;
for(int k=s[i][j-];k<=s[i+][j];k++)
{
if(d>dp[i][k]+dp[k+][j]+sum[j]-sum[i-])
{
d=dp[i][k]+dp[k][j]+sum[j]-sum[i-];
id=k;
}
}
dp[i][j]=d;
s[i][j]=id;
}
总复杂度O(n^2)
补充一个证明
来源为https://www.cnblogs.com/mlystdcall/p/6525962.html,我稍微加了一点点
对于固定的区间长度len,有
dp[i][i+len]的决策范围为s[i][i+len-1]至s[i+1][i+len]
dp[i+1][i+len+1]的决策范围为s[i+1][i+len]至s[i+2][i+len+1]
dp[i+2][i+len+2]的决策范围为s[i+2][i+len+1]至s[i+3][i+len+2]
如此脑补下去,我们发现,对于固定的区间长度len,总共的决策只有O(n)个!因为一共有O(n)个不同的区间长度len,所以算法的总复杂度就是O(n^2)!
模板题:合并石子
现在有n堆石子,要将石子按一定顺序地合成一堆,规定如下,每次只能移动相邻的两堆石子,合并费用为新和成一堆石子的数量,求把n堆石子全部合并到一起所花的最少或者最大花费
很容易想到这样一个dp转移
dp[i][j]=min{dp[i][k]+dp[k+1][j]}+cost[i][j]
震惊!这不就是之前所讲的模型嘛?原来之前O(n^3)方的合并石子问题还可以优化(我太弱了)
首先明确一点,cost[i][j]表示把第i堆到第j堆的石子和到一起的最后一步的代价,显然,之前无论怎么合并,最后一步的代价都是一样的,所以我们可以先预处理出这个cost数组,他等于cnt[j]-cnt[i-1],其中cnt数组是前缀和
---------------------
作者:NOIAu
来源:CSDN
原文:https://blog.csdn.net/noiau/article/details/72514812
版权声明:本文为博主原创文章,转载请附上博文链接!
分析题目:
只要证明cost(i,j)满足凸性。g(j)=cost(i,j)-cost(i+1,j)=sum(j)-sum(i-1)-sum(j)+sum(i)=sum(i)-sum(i-1)与j无关,满足(此时为等于)。
我的模板:
#include<bits/stdc++.h>
using namespace std; const int N=,INF=(int)1e9;
int dp[N][N],s[N][N],sum[N]; int main()
{
//freopen("a.in","r",stdin);
int n;
scanf("%d",&n);
sum[]=;
for(int i=;i<=n;i++)
{
int x;
scanf("%d",&x);
sum[i]=sum[i-]+x;
}
for(int i=;i<=n;i++) dp[i][i]=,s[i][i]=i;
//s(i,j-1)<=s(i,j)<=s(i+1,j)
for(int i=n;i>=;i--)
(int j=i+;j<=n;j++)
{
int d=INF,id=;
for(int k=s[i][j-];k<=s[i+][j];k++)
{
if(d>dp[i][k]+dp[k+][j]+sum[j]-sum[i-])
{
d=dp[i][k]+dp[k][j]+sum[j]-sum[i-];
id=k;
}
}
dp[i][j]=d;
s[i][j]=id;
}
printf("%d\n",dp[][n]);
return ;
}
dp优化-四边形不等式(模板题:合并石子)的更多相关文章
- 省选算法学习-dp优化-四边形不等式
嗯......四边形不等式的确长得像个四边形[雾] 我们在dp中,经常见到这样一类状态以及转移方程: 设$dp\left[i\right]\left[j\right]$表示闭区间$\left[i,j\ ...
- dp优化---四边形不等式与决策单调性
四边形不等式 定理1: 设w(x,y)为定义在整数集合上的二元函数,若存在任意整数a,b,c,d(a<=b<=c<=d),并且w(a,d)+w(b,c)>=w(a,c)+w(b ...
- 区间dp之四边形不等式优化详解及证明
看了那么久的四边形不等式优化的原理,今天终于要写一篇关于它的证明了. 在平时的做题中,我们会遇到这样的区间dp问题 它的状态转移方程形式一般为dp[i][j]=min(dp[i][k]+dp[k+1] ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化
HDU 2829 区间DP & 前缀和优化 & 四边形不等式优化 n个节点n-1条线性边,炸掉M条边也就是分为m+1个区间 问你各个区间的总策略值最少的炸法 就题目本身而言,中规中矩的 ...
- 区间DP的四边形不等式优化
今天上课讲DP,所以我学习了四边形不等式优化(逃 首先我先写出满足四边形不等式优化的方程:
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- 『一维线性dp的四边形不等式优化』
四边形不等式 定义:设\(w(x,y)\)是定义在整数集合上的的二元函数,若对于定义域上的任意整数\(a,b,c,d\),在满足\(a\leq b\leq c \leq d\)时,都有\(w(a,d) ...
- DP 优化方法大杂烩 & 做题记录 I.
标 * 的是推荐阅读的部分 / 做的题目. 1. 动态 DP(DDP)算法简介 动态动态规划. 以 P4719 为例讲一讲 ddp: 1.1. 树剖解法 如果没有修改操作,那么可以设计出 DP 方案 ...
随机推荐
- Oracle AWR日志使用
SQL>@?/rdbms/admin/awrrpt.sql Specify the Report Type ~~~~~~~~~~~~~~~~~~~~~~~ Would you like an H ...
- codeforces 987 D. Fair
D. Fair time limit per test 2 seconds memory limit per test 512 megabytes input standard input outpu ...
- P3385 【模板】负环
题目描述 暴力枚举/SPFA/Bellman-ford/奇怪的贪心/超神搜索 输入输出格式 输入格式: 第一行一个正整数T表示数据组数,对于每组数据: 第一行两个正整数N M,表示图有N个顶点,M条边 ...
- JavaScript中:表达式和语句的区别
JavaScript中:表达式和语句的区别 Javascript语言精粹:表达式是由运算符构成,并运算产生结果的语法结构.程序是由语句构成,语句则是由“:(分号)”分隔的句子或命令.如果在表达式后面加 ...
- ictclas4j 分词工具包 安装流程
首先把 ictclasj解压缩,然后 1.把 Data文件夹整个拷贝到 Eclipse项目的文件夹下, 2.而 bin目录下的 org文件夹整个拷贝到你 Eclipse项目的 bin目录下,(将cla ...
- I/O复用----select
2018-07-31 (星期二)I/O复用: 一个应用程序通常需要服务一个以上的文件描述符. 例如stdin,stdout,进程间通信以及若干文件进行I/O,如果不借助线程的话,(线程通常 ...
- [BZOJ2067]szn
description BZOJ权限题. solution 一道非常好的二分+贪心题目. 第一问就是\(\frac{\sum_u(deg[u]-1)}{2}+1\). 第二问需要在方案最优的情况下最长 ...
- BZOJ4311:向量——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4311 你要维护一个向量集合,支持以下操作: 1.插入一个向量(x,y) 2.删除插入的第i个向量 ...
- BZOJ1031:[JSOI2007]字符加密——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=1031 喜欢钻研问题的JS同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密 ...
- HDU5446:Unknown Treasure——题解
http://acm.hdu.edu.cn/showproblem.php?pid=5446 求C(n,m)%(p1p2…pk)的值,其中pi均为质数. 参考:https://www.cnblogs. ...