一些基本的定义在这里: [模板] 计算几何1(基础): 点/向量/线/圆/多边形/其他运算

自适应Simpson

Simpson's Rule:

\[\int ^b_a f(x)dx\approx \frac{b-a}6(f(a)+4f(\frac{a+b}{2})+f(b))
\]

这是对二次函数的积分估值, 对于一, 二次函数来说都是准确的.

但是对于其他函数来说, 这只是利用二次函数进行近似.

可以采用自适应精度的手段, 使得估值接近真实结果. 详见代码.

然后这是误差估计, 详见 adaptive.pdf:

\[\int_{a}^b f(x) \mathrm{d}x = S(a, c) + S(c, b) + \frac{1}{15}[S(a, c) + S(b, c) - S(a, b)] + O((b - a)^6)
\]

一种实现:

db f(db x){
//returns f(x)
} db simp(db l,db r){
db mid=(l+r)/2.0;
return (r-l)*(f(l)+4*f(mid)+f(r))/6.0;
}
db asr(db l,db r,db ans){
db mid=(l+r)/2.0;
db vl=simp(l,mid),vr=simp(mid,r),tmp=vl+vr-ans;
if(fabs(tmp)<=eps)return ans;
else return asr(l,mid,vl)+asr(mid,r,vr);
}

凸包

Andrew 算法, 即分别求上, 下凸包. 时间复杂度 \(O(n \log n)\).

struct tvec{db x,y;};

il int dcmp(db a){return fabs(a)<=eps?0:(a>0?1:-1);}
il db p2(db a){return a*a;}
il db gougu1(db a,db b){return sqrt(p2(a)+p2(b));}
il tvec operator+(tvec a,tvec b){return (tvec){a.x+b.x,a.y+b.y};}
il tvec operator-(tvec a,tvec b){return (tvec){a.x-b.x,a.y-b.y};}
il tvec operator*(tvec a,db b){return (tvec){a.x*b,a.y*b};}
il tvec operator*(db a,tvec b){return b*a;}
il db operator*(tvec a,tvec b){return a.x*b.y-b.x*a.y;}
il db operator^(tvec a,tvec b){return a.x*b.x+a.y*b.y;}
il db len(tvec a){return gougu1(a.x,a.y);}
bool cmp(tvec a,tvec b){int tmp=dcmp(a.x-b.x);return tmp?tmp<0:dcmp(a.y-b.y)<0;} tvec li[nsz],conv[nsz];
int pc=0;
void getconv(){
sort(li+1,li+n+1,cmp);
rep(i,1,n){
while(pc>1&&dcmp((conv[pc]-conv[pc-1])*(li[i]-conv[pc]))<=0)--pc;
conv[++pc]=li[i];
}
int tmp=pc;
repdo(i,n-1,1){
while(pc>tmp&&dcmp((conv[pc]-conv[pc-1])*(li[i]-conv[pc]))<=0)--pc;
conv[++pc]=li[i];
}
if(n>1)--pc;
}

半平面交

增量法, 时间复杂度 \(O(n \log n)\) (排序的复杂度).

需要保证不是开放的半平面. 否则加上四个 \(\pm \infty\) 的平面即可.

细节较多. 详见代码...

const int psz=550;
const db eps=1e-9;
int n,m; db dcmp(db v){return fabs(v)<=eps?0:(v>0?1:-1);}
db p2(db v){return v*v;} struct tvec{db x,y;};
tvec operator+(tvec a,tvec b){return (tvec){a.x+b.x,a.y+b.y};}
tvec operator-(tvec a,tvec b){return (tvec){a.x-b.x,a.y-b.y};}
tvec operator*(tvec a,db b){return (tvec){a.x*b,a.y*b};}
tvec operator*(db a,tvec b){return b*a;}
db operator*(tvec a,tvec b){return a.x*b.y-a.y*b.x;}
db operator^(tvec a,tvec b){return a.x*b.x+a.y*b.y;}
db len(tvec a){return sqrt(p2(a.x)+p2(a.y));} struct tl{
tvec p,v;
db d;
tl(){}
tl(tvec a,tvec b):p(a),v(b-a){d=atan2(v.y,v.x);}
}li[psz];
int pl=0;
bool operator<(tl a,tl b){return a.d<b.d;}
bool isleft(tl a,tvec b){return dcmp(a.v*(b-a.p))>0;}
il tvec inters(tl a,tl b){db v=(b.v*(a.p-b.p))/(a.v*b.v);return a.p+a.v*v;} tvec poly[psz];
int ppo=0; tl que[psz]; //queue
tvec qp[psz]; //intersect points
int qh=1,qt=0;
int hplane(){//0 fail, 1 success
sort(li+1,li+pl+1);
int pl1=1;//suppose that pl>=1
rep(i,2,pl){
if(li[i].d>li[pl1].d)li[++pl1]=li[i];
else if(isleft(li[pl1],li[i].p))li[pl1]=li[i];
}
pl=pl1;
qh=1,qt=0;
rep(i,1,pl){
while(qh<qt&&!isleft(li[i],qp[qt-1]))--qt;
while(qh<qt&&!isleft(li[i],qp[qh]))++qh;
que[++qt]=li[i];
if(qh<qt)qp[qt-1]=inters(que[qt-1],que[qt]);
}
while(qh<qt&&!isleft(que[qh],qp[qt-1]))--qt; //**
ppo=0;
if(qt-qh<=1)return 0; //no sol
qp[qt]=inters(que[qh],que[qt]);
rep(i,qh,qt)poly[++ppo]=qp[i];
return 1;
}

旋转卡壳

这是一种拥有 \(4\) 个多音字, \(2^4 = 16\) 种读音的优秀算法.

闵可夫斯基和

[模板] 计算几何2: 自适应Simpson/凸包/半平面交/旋转卡壳/闵可夫斯基和的更多相关文章

  1. HDU 6617 Enveloping Convex(凸包+半平面交+二分)

    首先对于这m个点维护出一个凸包M,那么问题就变成了判断凸包P进行放大缩小能不能包含凸包M.(凸包P可以进行中心对称变换再进行放大缩小,见题意) 如何判断合适的相似比呢,我们可以用二分去放大缩小凸包P的 ...

  2. 【POJ 2187】Beauty Contest(凸包直径、旋转卡壳)

    给定点集的最远两点的距离. 先用graham求凸包.旋(xuán)转(zhuàn)卡(qiǎ)壳(ké)求凸包直径. ps:旋转卡壳算法的典型运用 http://blog.csdn.net/hanch ...

  3. [Bzoj1069][Scoi2007]最大土地面积(凸包)(旋转卡壳)

    1069: [SCOI2007]最大土地面积 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 3629  Solved: 1432[Submit][Sta ...

  4. CSU 1806 Toll 自适应simpson积分+最短路

    分析:根据这个题学了一发自适应simpson积分(原来积分还可以这么求),然后就是套模板了 学习自适应simpson积分:http://blog.csdn.net/greatwall1995/arti ...

  5. 【BZOJ 1069】【SCOI 2007】最大土地面积 凸包+旋转卡壳

    因为凸壳上对踵点的单调性所以旋转卡壳线性绕一圈就可以啦啦啦--- 先求凸包,然后旋转卡壳记录$sum1$和$sum2$,最后统计答案就可以了 #include<cmath> #includ ...

  6. UVA 4728 Squares(凸包+旋转卡壳)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17267 [思路] 凸包+旋转卡壳 求出凸包,用旋转卡壳算出凸包的直 ...

  7. 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1945  Solve ...

  8. BZOJ 1185 [HNOI2007]最小矩形覆盖:凸包 + 旋转卡壳

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1185 题意: 给出二维平面上的n个点,问你将所有点覆盖的最小矩形面积. 题解: 先找出凸 ...

  9. HDU 5251 矩形面积(二维凸包旋转卡壳最小矩形覆盖问题) --2015年百度之星程序设计大赛 - 初赛(1)

    题目链接   题意:给出n个矩形,求能覆盖所有矩形的最小的矩形的面积. 题解:对所有点求凸包,然后旋转卡壳,对没一条边求该边的最左最右和最上的三个点. 利用叉积面积求高,利用点积的性质求最左右点和长度 ...

随机推荐

  1. luoguP3390(矩阵快速幂模板题)

    链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...

  2. httprunner - 源码解析

    这里只是做一个大概的解析,还有很多细节部分没有太过于关注 我们从cli.py开始进行解析 1.argparse.ArgumentParser 接受命令行的各种参数 [ argparse.Argumen ...

  3. 大数据之Hadoop完全分布式集群搭建

    1.准备阶段 1.1.新建三台虚拟机 Hadoop完全分市式集群是典型的主从架构(master-slave),一般需要使用多台服务器来组建.我们准备3台服务器(关闭防火墙.静态IP.主机名称).如果没 ...

  4. assign()-JS

    ------------恢复内容开始------------ 现需要在js中,使用一个新的对象的值覆盖旧有对象,js中有一个方法: Object.assign(target,…sources) 当ta ...

  5. FFmpeg4.0笔记:封装ffmpeg的解码功能类CDecode

    Github https://github.com/gongluck/FFmpeg4.0-study/tree/master/Cff CDecode.h /********************** ...

  6. java-阿里云发送短信

    <!--aliyun短信sdk--> <dependency> <groupId>com.aliyun</groupId> <artifactId ...

  7. python cx_oracle 环境搭建

    背景说明: 之前的环境本来是可以用的,是另外一个项目(python27)需要的时候搭建的.新项目采用的是python36,安装的cx_oracle的版本是7,而环境中的Oracle客户端是11,导致p ...

  8. leetcode难题

    4 寻找两个有序数组的中位数       35.9% 困难     10 正则表达式匹配       24.6% 困难     23 合并K个排序链表       47.4% 困难     25 K ...

  9. Action注入错误

    2016-07-13 13:52:09,584 [ERROR]-[com.opensymphony.xwork2.util.logging.commons.CommonsLogger:38] Exce ...

  10. web-CSS居中大全

    居中是我们使用css来布局时常遇到的情况.使用css来进行居中时,有时一个属性就能搞定,有时则需要一定的技巧才能兼容到所有浏览器,本文就居中的一些常用方法做个简单的介绍. 注:本文所讲方法除了特别说明 ...