CQOI2007 余数之和
Time Limit: 5 Sec Memory Limit: 128 MB
Description
给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值
其中k mod i表示k除以i的余数。
例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7
Input
输入仅一行,包含两个整数n, k。
1<=n ,k<=10^9
Output
输出仅一行,即j(n, k)。
Sample Input
5 3
Sample Output
7
##简要题解
我们可以把原式数学化一下:求$\sum \limits_^n k \mod i$。
我们可以发现
\begin{align*}
\text{原式}&=\sum \limits_{i=1}^n k \mod i\\
&=\sum \limits_{i=1}^n k- \lfloor \frac ki \rfloor \cdot i\\
&=nk - \sum \limits_{i=1}^n \lfloor \frac ki \rfloor \cdot i
\end{align*}
\]
显然,只要$\lfloor \frac ki \rfloor$的值在一段段i的范围内是一样的。我们的任务就是要求出每一段这样的范围。我们令$f(x)=\lfloor \frac kx \rfloor \qquad g(x)=\lfloor \frac k{\lfloor \frac kx \rfloor} \rfloor$,那么其实直觉就可以告诉我们$g(x)\(就可以表示f值=\)\lfloor \frac kx \rfloor$的最大的数。然而数学毕竟是一门严谨的科学,我们可能需要来证明一下。
显然$\lfloor \frac kx \rfloor \leq \frac kx$,那么$g(x)=\lfloor \frac k{\lfloor \frac kx \rfloor} \rfloor \geq \lfloor \frac k{\frac kx } \rfloor = x \text{即} g(x) \geq x$。所以有$\lfloor \frac k{g(x)} \rfloor \leq \lfloor \frac kx \rfloor$。
同时,\(\lfloor \frac k{g(x)} \rfloor = \lfloor \frac k{\lfloor \frac k{\lfloor \frac kx \rfloor} \rfloor} \rfloor \geq \lfloor \frac k{ \frac k{\lfloor \frac kx \rfloor} } \rfloor = \lfloor \frac kx \rfloor\),即$\lfloor \frac k{g(x)} \rfloor \geq \lfloor \frac kx \rfloor$ 又$\lfloor \frac k{g(x)} \rfloor \leq \lfloor \frac kx \rfloor$,所以$\lfloor \frac k{g(x)} \rfloor = \lfloor \frac kx \rfloor$。
所以$\forall i \in [x,\lfloor \frac k{\lfloor \frac kx \rfloor} \rfloor]\(,\)\lfloor \frac ki \rfloor$的值都相等!其实之前的猜想的“最大”是很显然的,也没必要再去证一遍了,就算不是最大的,也不影响我们的这个程序。
下面我们就有了一个算法:统计$[1,g(1)]\(的区间里的\)\lfloor \frac ki \rfloor \cdot i$的和,既然$\lfloor \frac ki \rfloor$都一样,那就用等差数列求和公式来算一下即可。然后在从$g(1)+1$到$g(g(1)+1)$这段区间再如此统计……重复上述步骤,直到$i>k$,此时$\lfloor \frac ki \rfloor$一定等于0,直接令g(i)=n,统计i..n即可。
下面我们算一下时间复杂度。这个时间复杂度,应该等于$\lfloor \frac ki \rfloor$有多少个不同的取值是一样的。当$i \leq \sqrt k$时,i只有$\sqrt k$中取值,所以$\lfloor \frac ki \rfloor$也最多只有$\sqrt k$种取值。当$i > \sqrt k$时,\(\lfloor \frac ki \rfloor < \sqrt k\),所以$\lfloor \frac ki \rfloor$也最多只有$\sqrt k$种取值,所以$\lfloor \frac ki \rfloor$一共最多$2 \sqrt k$种取值。所以该算法的之间复杂度为$O(\sqrt k)$。
代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
int n,k;ll ans;
int main(){
scanf("%d%d",&n,&k);ans=1ll*n*k;
for(register int i=1,g;i<=n;i=g+1){
if(k/i!=0)g=min(n,k/(k/i));else g=n;//错误笔记:如果k/i==0即k<i的话,k/(k/i)会炸掉,所以要特判一下。
ans-=(ll)(k/i)*(i+g)*(g-i+1)/2;
}
printf("%lld\n",ans);
}
CQOI2007 余数之和的更多相关文章
- BZOJ 1257: [CQOI2007]余数之和sum
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 3769 Solved: 1734[Submit][St ...
- bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 1779 Solved: 823[Submit][Sta ...
- BZOJ 1257: [CQOI2007]余数之和sum( 数论 )
n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i) = ∑ , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...
- 1257: [CQOI2007]余数之和sum
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 2001 Solved: 928[Submit][Sta ...
- BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 4474 Solved: 2083[Submit][St ...
- BZOJ_1257_ [CQOI2007]余数之和sum_数学
BZOJ_1257_ [CQOI2007]余数之和sum_数学 题意:给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值. 分 ...
- BZOJ 1257: [CQOI2007]余数之和
1257: [CQOI2007]余数之和 Time Limit: 5 Sec Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...
- 1257: [CQOI2007]余数之和
题目链接 bzoj1257: [CQOI2007]余数之和 题解 数论分块,乘等差数列求和 代码 #include<bits/stdc++.h> using namespace std; ...
- bzoj千题计划173:bzoj1257: [CQOI2007]余数之和sum
http://www.lydsy.com/JudgeOnline/problem.php?id=1257 k%i=k-int(k/i)*i 除法分块,对于相同的k/i用等差序列求和来做 #includ ...
- BZOJ1257 CQOI2007 余数之和 【数分块】
BZOJ1257 CQOI2007 余数之和 Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n的值 其中 ...
随机推荐
- 在使用mybatis中指定字段查询
1:需求:查询学过“叶平”老师所教的所有课的同学的学号.姓名: List<Map<String,Object>> selectYepingAllCourse(@Param(&q ...
- php str_replace()函数 语法
php str_replace()函数 语法 作用:字符串替换操作,区分大小写大理石构件 语法:str_replace(find,replace,string,count) 参数: 参数 描述 fin ...
- UE4在PSVR中的抗锯齿和优化相关知识
UE4目前版本(4.15)在PS平台上并不支持MSAA,在未来的版本会加入.也就是说目前没有办法在PS平台上使用Forward Rendering + MSAA的组合 FXAA效率最高,但效果最差,只 ...
- html from表单异步处理
from表单异步处理. 简单处理方法: jQuery做异步提交表单处理, 通过$("#form").serialize()将表单元素的数据转化为字符串, 最后通过$.ajax()执 ...
- 【Java架构:进阶技术】——一篇文章搞掂:JVM调优
Sun官方定义的Java技术体系: Java程序设计语言 各种硬件平台上的Java虚拟机 Class文件格式 Java API类库 来自商业机构和开源社区的第三方Java类库 JDK(Java Dev ...
- sscanf sscanf_s使用
#include<stdio.h> 定义函数 int sscanf (const char *str,const char * format,........); 函数说明 sscanf ...
- Hadoop ”No room for reduce task“问题处理
早上发现一个任务有20个reduce,但是只有四个正常完成,剩余16个等待了8个小时才分配执行(集群槽位资源充足) 解决方法:查看了集群的log,发现有这种warn: -- ::, WARN org. ...
- 使用代理IP、高匿IP、连接失败
先百度一下,什么是代理IP 我们使用代理IP就是因为某些站点会屏蔽我们的IP,所以我们要动态的更换代理IP. 代理IP: 其中我们首先选择国内的IP,国外的一般都比较慢,其次不要选择如{新疆乌鲁木齐} ...
- Share架构的一些心得
个人这些年,从web->system service->app 项目实战,陆陆续续经历的项目很多,自己也数不清.自己也一直对于架构没有明确去给出一个自己的定义描述. 刚好最近一直在flut ...
- flutter输入颜色枚举卡顿假死
AndroidStudio 3.3.2 遇到 flutter输入颜色枚举卡顿假死,目前没好的解决方案,可以设置显示时间或者关闭popup窗口显示文档,这样就不会卡顿了 下面示例代码在输入 Colors ...