k-近邻算法(kNN)准备数据:归一化数值
#准备数据:归一化数值
def autoNorm(dataSet): #autoNorm()函数可以自动将数字特征值转换为0到1的区间
minVals = dataSet.min(0)
maxVals = dataSet.max(0) #ddataSet.max(0)中的参数0使得函数可以从列中选取最小值
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
#newValue = (oldValue-min)/(max-min),该公式可以将任意取值范围的特征值转换为0到1区间内的值
#tile()函数将变量内容复制成输入矩阵同样大小的矩阵(具体特征值相除)
#在numpy库中,矩阵除法需要使用函数linalg.solve(matA,matB)
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1))
return normDataSet, ranges, minVals
运行结果:
>>>normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
>>>normMat
array([[1., 1., 1.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
>>>ranges
array([4.092000e+04, 8.326976e+00, 9.539520e-01])
>>>minVals
array([0., 0., 0.])
出现的错误:
>>>normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
Traceback (most recent call last):
File "<input>", line 1, in <module>
NameError: name 'kNN' is not defined >>>normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
Traceback (most recent call last):
File "<input>", line 1, in <module>
AttributeError: module 'kNN' has no attribute 'autoNorm'
解决办法:
个人解决办法:重启PyCharm,运行kNN.py,重新完整的输入运行命令,问题就解决了
>>>from numpy import *
>>>random.rand(4,4)
>>>randMat = mat(random.rand(4,4))
>>>randMat.I
>>>invRandMat = randMat.I
>>>myEye = randMat*invRandMat
>>>myEye - eye(4)
>>>group,labels = kNN.createDataSet()
>>>group
>>>labels
>>>kNN.classify0([0,0], group, labels, 3)
>>>datingDataMat,datingLabels = kNN.file2matrix('datingTestSet.txt')
>>>datingDataMat
>>>datingLabels[0:16]
>>>import matplotlib
>>>import matplotlib.pyplot as plt
>>>fig = plt.figure()
>>>ax = fig.add_subplot(111)
>>>ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
>>>plt.show()
>>>normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
>>>normMat
array([[1., 1., 1.],
[0., 0., 0.],
[0., 0., 0.],
...,
[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])
>>>ranges
array([4.092000e+04, 8.326976e+00, 9.539520e-01])
>>>minVals
array([0., 0., 0.])
k-近邻算法(kNN)准备数据:归一化数值的更多相关文章
- k近邻算法(KNN)
k近邻算法(KNN) 定义:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别. from sklearn.model_selection ...
- 机器学习(四) 分类算法--K近邻算法 KNN (上)
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...
- 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!
1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...
- 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)
六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...
- k近邻算法(knn)的c语言实现
最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...
- 《机器学习实战》---第二章 k近邻算法 kNN
下面的代码是在python3中运行, # -*- coding: utf-8 -*- """ Created on Tue Jul 3 17:29:27 2018 @au ...
- 最基础的分类算法-k近邻算法 kNN简介及Jupyter基础实现及Python实现
k-Nearest Neighbors简介 对于该图来说,x轴对应的是肿瘤的大小,y轴对应的是时间,蓝色样本表示恶性肿瘤,红色样本表示良性肿瘤,我们先假设k=3,这个k先不考虑怎么得到,先假设这个k是 ...
- 07.k近邻算法kNN
1.将数据分为测试数据和预测数据 2.数据分为data和target,data是矩阵,target是向量 3.将每条data(向量)绘制在坐标系中,就得到了一系列的点 4.根据每条data的targe ...
- 机器学习实战python3 K近邻(KNN)算法实现
台大机器技法跟基石都看完了,但是没有编程一直,现在打算结合周志华的<机器学习>,撸一遍机器学习实战, 原书是python2 的,但是本人感觉python3更好用一些,所以打算用python ...
- 机器学习(1)——K近邻算法
KNN的函数写法 import numpy as np from math import sqrt from collections import Counter def KNN_classify(k ...
随机推荐
- Python基础学习:operator模块
operator——函数的标准操作 转自:https://blog.csdn.net/zhtysw/article/details/80510113 代码资源:Lib/operator.py oper ...
- 使用notepad++写markdown的配置过程
已过时 下载最新的markdown插件,github 解压后将MarkdownViewerPlusPlus.dll复制一份到notepad就能看到markdown插件的小图标了 设置markdown高 ...
- Vulnhub渗透测试练习(一) ----------Breach1.0
教程网址 https://www.freebuf.com/articles/system/171318.html 学习经验总结 1.使用jre的bin目录下的keytool命令来输入秘钥库口令进而获取 ...
- TCGA癌症缩写、癌症中英文对照
Cohort 英文名称 中文名称 ACC Adrenocortical carcinoma 肾上腺皮质癌 BLCA Bladder Urothelial Carcinoma 膀胱尿路上皮癌 BRCA ...
- Ubuntu下的图形化多线程下载器XDM
目录 1.下载 2.安装 3.浏览器支持 使用Ubuntu下载东西经常过于缓慢,因此需要多进程下载器. 1.下载 下载链接:http://xdman.sourceforge.net/#download ...
- init函数和匿名函数
init函数: 基本介绍: 每一个源文件都可以包含一个init函数,该函数会在main函数执行前,被Go运行框架调用,也就是说init会在main函数前被调用. 案例说明: //init函数,通常可以 ...
- Python入门习题7.分别统计输入各类字符个数
例7.用户从键盘输入一行字符,编写一个程序,统计并输出其中的英文字符(包括中文字符).数字.空格和其他字符个数. #字符数统计.py Str = input('请输入一行字符:') alpha = 0 ...
- P2634 [国家集训队]聪聪可可(题解)(点分治)
P2634 [国家集训队]聪聪可可(题解)(点分治) 洛谷题目 #include<iostream> #include<cstdlib> #include<cstdio& ...
- flex布局解说和属性
1. flex-direction 规定当前DIV下面的子元素是横向布局还是纵向布局 row 默认值,横向布局相当于float:left column 纵向,相当于DIV默认的垂直方向 2.justi ...
- hdu1423 最长公共上升子序列
题目传送门 Greatest Common Increasing Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...