树形dp的经典例题

题目描述

Bob喜欢玩电脑游戏,特别是战略游戏。但是他经常无法找到快速玩过游戏的办法。现在他有个问题。

他要建立一个古城堡,城堡中的路形成一棵树。他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能了望到所有的路。

注意,某个士兵在一个结点上时,与该结点相连的所有边将都可以被了望到。

请你编一程序,给定一树,帮Bob计算出他需要放置最少的士兵.

输入输出格式

输入格式:

第一行 N,表示树中结点的数目。

第二行至第N+1行,每行描述每个结点信息,依次为:该结点标号i,k(后面有k条边与结点I相连)。

接下来k个数,分别是每条边的另一个结点标号r1,r2,...,rk。

对于一个n(0<n<=1500)个结点的树,结点标号在0到n-1之间,在输入数据中每条边只出现一次。

输出格式:

输出文件仅包含一个数,为所求的最少的士兵数目。

例如,对于如下图所示的树:

答案为1(只要一个士兵在结点1上)。

输入输出样例

输入样例#1:

4
0 1 1
1 2 2 3
2 0
3 0
输出样例#1:

1
设 f [ i ][ 0 ] 表示这个点不取,则它的所有子节点都要取
设f [ i ][ 1 ] 表示这个点取,则它的子节点取与不取对之前的答案没有影响,只要取两个中最优的情况。
由此推出答案
#include<bits/stdc++.h>//万能头,666
using namespace std;
int n,x,vis[],f[][];
struct node//每个点的信息
{
int num,child[];//各种孩子和孩子数
}a[];
inline void dp(int x)//树形dp的过程
{
f[x][]=;//初始dp值
f[x][]=;//初始dp值
if(a[x].num==)//若找到叶子节点,算是一个小优化
return;
for(int i=;i<=a[x].num;i++)//遍历x的每一个儿子
{
int y=a[x].child[i];
dp(y);//递归dp
f[x][]+=f[y][];//dp转移方程(若不选x)
f[x][]+=min(f[y][],f[y][]);//dp转移方程(若选x)
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&x);
scanf("%d",&a[x].num);
for(int j=;j<=a[x].num;j++)
{
scanf("%d",&a[x].child[j]);//输入儿子
vis[a[x].child[j]]=;//该节点有父亲
}
}
int root=;//初始为0,开始找根
while(vis[root])//寻根
root++;
dp(root);//从根开始dp
printf("%d",min(f[root][],f[root][]));//选择跟更优的方案输出
return ;
}

【洛谷P2016战略游戏】的更多相关文章

  1. 洛谷P2016 战略游戏

    P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...

  2. 洛谷P2016战略游戏

    传送门啦 战略游戏这个题和保安站岗很像,这个题更简单,这个题求的是士兵人数,而保安站岗需要求最优价值. 定义状态$ f[u][0/1] $ 表示 $ u $ 这个节点不放/放士兵 根据题意,如果当前节 ...

  3. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  4. 洛谷 P2016 战略游戏

    题意简述简述 求一棵树的最小点覆盖 题解思路 树形DP dp[i][0]表示第i个点覆盖以i为根的子树的最小值,且第i个点不放士兵 dp[i][1]表示第i个点覆盖以i为根的子树的最小值,且第i个点放 ...

  5. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

  6. 洛谷 2016 战略游戏(树形DP)

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...

  7. 洛谷2016 战略游戏 (0/1状态的普通树形Dp)

    题意: 给出一个树,覆盖树上某一个点的花费为w[i],求树上每一条边至少有一个点覆盖的最小花费. 细节: 1.一条边的两端可以均被覆盖,但是不能存在一条边的两端都不被覆盖. 2.可能存在 分析: 对于 ...

  8. 洛谷 P2197 nim游戏

    洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...

  9. 洛谷 P1965 转圈游戏

    洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...

随机推荐

  1. mysql小数和类型转换函数

    保留两位小数 SELECT ROUND( 123456789.3563898,2),TRUNCATE(123456789.3563898,2),FORMAT(123456789.3563898,2); ...

  2. node.js使用swig模块

    1.安装swig npm install swig --save 2.创建app.js文件 /*应用程序入口文件*/ /*加载express模块*/ var express = require('ex ...

  3. mysql5和mysql8连接数据库的配置

    mysql5: mysql8: db.properties jdbc.driver=com.mysql.cj.jdbc.Driver jdbc.url=jdbc:mysql://localhost:3 ...

  4. HashMap的相关面试题

    HashMap的工作原理是近年来常见的Java面试题.几乎每个Java程序员都知道HashMap,都知道哪里要用HashMap,知道Hashtable和HashMap之间的区别,那么为何这道面试题如此 ...

  5. 一、core 启动设置文件中的错误(启动文件不存在)

    一.启动文件不存在 查看 别人的 原因是

  6. Java并发编程实战 第6章 任务并行 第7章 取消与关闭

    ExecutorCompletionService CompletionService用来接收一个Executor的执行结果,将已经完成任务,放置在可使用 take 访问的队列上. 大概用法: Exe ...

  7. idea控制台搜索框

    https://blog.csdn.net/honnyee/article/details/82772948

  8. 数据可视化--> numpy

    一.NumPy 1.简介: 官网链接:http://www.numpy.org/ NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库 ...

  9. tar命令--数据归档(一)

    虽然zip命令能够很好的将数据压缩和归档到单个文件,蛋挞不是linux 和unix的标准归档工具. ta命令最开始是用来将文件写到磁盘设备上的归档.然而他也能把输出写道文件里. 你会发现这个可选参数是 ...

  10. 详解javaweb中jstl如何循环List中的Map数据_java - JAVA

    文章来源:嗨学网 敏而好学论坛www.piaodoo.com 欢迎大家相互学习 详解javaweb中jstl如何循环List中的Map数据 第一种方式: 1:后台代码(测试) List<Map& ...