扩展欧拉定理【p4139】上帝与集合的正确用法
Description
根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了\(10^9\)次元素,或\(10^{18}\)次,或者干脆\(\infty\)次
One word.
\(2^{2^{2^{....}}}mod\ p\)
Input
第一行一个整数\(T\),表示数据个数。
接下来\(T\)行,每行一个正整数\(p\),代表你需要取模的值
Output
\(T\)行,每行一个正整数,为答案对\(p\)取模后的值
直接套公式即可,证明的话目前在准备\(Noip\),将来证明.
\]
所以这里递归求解即可.
求\(\phi()\)的话.我没有用线性筛求,选择了
\]
这里的\(p\)为质数.
代码
#include<cstdio>
#include<cctype>
#define R register
#define int long long
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
inline int phi(int x)
{
int res=x;
for(R int i=2;i*i<=x;i++)
{
if(x%i==0)
{
res=res/i*(i-1);
while(x%i==0)x/=i;
}
}
if(x>1)res=res/x*(x-1);
return res;
}
int T;
inline int ksm(int x,int y,int p)
{
int res=1;
for(;y;y>>=1,x=x*x%p)
if(y&1)res=res*x%p;
return res;
}
inline int calc(int x)
{
if(x==1)return 0;
return ksm(2,calc(phi(x))+phi(x),x);
}
signed main()
{
in(T);
for(R int x;T;T--)
{
in(x);
printf("%lld\n",calc(x));
}
}
扩展欧拉定理【p4139】上帝与集合的正确用法的更多相关文章
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 题解-洛谷P4139 上帝与集合的正确用法
上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...
- Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
- 洛谷 P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- 【洛谷】P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天,上帝创造了一个世界的基本元素,称做“元”. 第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- 洛谷P4139 上帝与集合的正确用法 拓欧
正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) ) ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...
- [洛谷P4139]上帝与集合的正确用法
题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$ 题解:扩展欧拉定理,求出$\varphi(p)$即可.因为$2^{2^{2^{\dots}}}>> ...
- Luogu P4139 上帝与集合的正确用法
题目链接:Click here Solution: 这道题就考你会不会扩展欧拉定理,根据扩展欧拉定理可知 \[ a^b \equiv a^{(b\,mod\,\varphi(p))+\varphi(p ...
随机推荐
- 【APUE】Chapter8 Process Control
这章的内容比较多.按照小节序号来组织笔记的结构:再结合函数的示例带代码标注出来需要注意的地方. 下面的内容只是个人看书时思考内容的总结,并不能代替看书(毕竟APUE是一本大多数人公认的UNIX圣经). ...
- activiti并发多实例子流程任务处理
一直在搞工作流(activiti),总结一下关于工作流(activiti)中同时并发处理多个子流程的操作方法. 先说下我要实现的业务: 1.办公室发通知(在系统申报页面上,勾选科室,被选中的科室执行第 ...
- C++树的建立和遍历
#include<iostream.h> typedef char TElemtype; typedef struct Btree { TElemtype data; struct Btr ...
- 容器基础(一): Docker介绍
IaaS IaaS阶段, 用户租借基础设施,但是还是需要像以前管理服务器那样,用脚本或者手工方式在这些机器上部署应用.这个过程中当然难免会碰到云端机器和本地机器环境不一致的问题.想想每一次同步不同机器 ...
- STL之set&multiset使用简介
关于set,必须说明的是set关联式容器.set作为一个容器也是用来存储同一数据类型的数据类型,并且能从一个数据集合中取出数据,在set中每个元素的值都唯一,而且系统能根据元素的值自动进行排序.应该注 ...
- C# 访问修饰符internal的访问范围误区释疑
一.前言 MSDN关于访问修饰符的访问级别解释: 访问修饰符是一些关键字,用于指定声明的成员或类型的可访 ...
- Ajax---概念介绍
Ajax不是某种编程语言,是一种在无需重新加载整个网页的情况下能够更新部分网页的技术. 运用HTML和CSS来实现页面,表达信息: 运用XMLHttpRequest和Web服务器进行数据的异步交换: ...
- EF异常:对一个或多个实体的验证失败
try catch 捕获到错误.然后看.找到哪个是没填的..... 我是这种错误.
- ThreadPoolExecutor源码解析
LZ目前正在做一个批量生成报表的系统,需要定时批量生成多张报表,便考虑使用线程池来完成.JDK自带的Executors工具类只提供创建固定线程和可伸展但无上限的两个静态方法,并不能满足LZ想自定制线程 ...
- [bzoj5287] [HNOI2018]毒瘤
题目描述 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的数据结构题:给出一个数组,要求支持若干种奇奇怪怪的修改操作(比如区间加一个数,或者区间开平方),并支持询问区间和.毒瘤考虑了n ...