1.mahout in Action2.2第一个例子
 
Running a first recommender engine
 
数据:
第一个数字是用户ID 第二个是书的ID,第三个是用户对书的评分,1-5 越高,表示用户越喜欢
1,101,5.0
1,102,3.0
1,103,2.5
 
2,101,2.0
2,102,2.5
2,103,5.0
2,104,2.0
 
3,101,2.5
3,104,4.0
3,105,4.5
3,107,5.0
 
4,101,5.0
4,103,3.0
4,104,4.5
4,106,4.0
 
5,101,4.0
5,102,3.0
5,103,2.0
5,104,4.0
5,105,3.5
5,106,4.0
 
1-5 用户对不同书的喜好程度如下图所示:
 
 
直觉上看这个图,用户1和用户5喜好很相似,都喜欢101,对102,103只是喜欢那么一点点。可以说非常相似。1和4其次,也很相似,都很喜欢101,不怎么喜欢103。
1和2的喜好貌似完全相反,1喜欢101,而2不喜欢。等等。。。
 
那么。考察用户1,我们推荐什么书给他呢?
 
101 102 103他已经知道了,在剩下的书中,我们选取哪几个呢?直觉告诉我们,1和4,5号用户很相似,因此,我们应该用4.5的喜好推测1的喜好,进行推荐。那么4,5都很喜欢104,106,我们就应该推荐这两本书给1.
 
人的内心是这么思考的,代码怎么表示出来呢?
 
 
 
public static void main(String[] args) throws Exception {
File modelFile = null;
if (args.length > 0)
modelFile = new File(args[0]);
if(modelFile == null || !modelFile.exists())
modelFile = new File("intro.csv");加载文件
if(!modelFile.exists()) {
System.err.println("Please, specify name of file, or put file 'input.csv' into current directory!");
System.exit(1);
}
DataModel model = new FileDataModel(modelFile);
 
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood =
new NearestNUserNeighborhood(2, similarity, model);
 
Recommender recommender = new GenericUserBasedRecommender(
model, neighborhood, similarity);
 
List<RecommendedItem> recommendations =
recommender.recommend(1, 1);推荐,对于用户1 推荐一个
 
for (RecommendedItem recommendation : recommendations) {
System.out.println(recommendation);
}
 
}
 
 
 
 
程序输出:
 
RecommendedItem [item:104, value:4.257081]
 
结果说明 推荐104 因为相应的评分为4.25
 
下一章节讲述怎么评价这个结果,这个和我们做生物研究实验一样,就是检验自己的结果的可信性。如果检验可信度高,就可以认为我们的理论是正确的。我们生物经常用到的是T检验,K检验等等,都是经典的理论。

mahout in Action研读(1)-给用户推荐图书的更多相关文章

  1. 【Machine Learning】Mahout基于协同过滤(CF)的用户推荐

    一.Mahout推荐算法简介 Mahout算法框架自带的推荐器有下面这些: l  GenericUserBasedRecommender:基于用户的推荐器,用户数量少时速度快: l  GenericI ...

  2. mahout in Action2.2-给用户推荐图书(1)-直观分析和代码

    This chapter covers  What recommenders are, within Mahout  A first look at a recommender in action ...

  3. mahout in Action2.2-给用户推荐图书(2)-分析对用户推荐书目的结果

    2.2.3 Analyzing the output 在之前的程序运行结果中我们得到的结果输出是: RecommendedItem [item:104, value:4.257081] 程序要求选择一 ...

  4. mahout in Action2.2-给用户推荐图书(3)-评价推荐系统

    推荐系统引擎是一个工具,一种回答问题的手段,"对用户来讲什么是最好的推荐?",在研究回答的前先研究一下这个问题.一个好的推荐的准确含义是什么?如何知道推荐系统是如何生成推荐的?下面 ...

  5. 推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比

    一.定义 UserCF:推荐那些和他有共同兴趣爱好的用户喜欢的物品 ItemCF:推荐那些和他之前喜欢的物品类似的物品 根据用户推荐重点是反应和用户兴趣相似的小群体的热点,根据物品推荐着重与用户过去的 ...

  6. 【推荐图书】+ 基于Nios II的嵌入式SoPC系统设计与Verilog开发实例+C#入门经典等

    [推荐图书]+ 基于Nios II的嵌入式SoPC系统设计与Verilog开发实例+C#入门经典等 3赞 发表于 2016/7/4 21:14:12 阅读(1921) 评论(3) 初次接触FPGA,到 ...

  7. Mahout之(二)协同过滤推荐

    协同过滤 —— Collaborative Filtering 协同过滤简单来说就是根据目标用户的行为特征,为他发现一个兴趣相投.拥有共同经验的群体,然后根据群体的喜好来为目标用户过滤可能感兴趣的内容 ...

  8. 在controller的action内, 得到用户发过来的请求地址和参数url

    class PController extends Controller{ public function Log() { echo $_SERVER["HTTP_HOST"] . ...

  9. 推荐图书-《SQL Server 2008商业智能完美解决方案》

    内容简介 <SQL Server 2008商业智能完美解决方案>介绍如何使用Microsoft SQL Server 2008开发商业智能(BI)解决方案.<SQL Server 2 ...

随机推荐

  1. demo(幸福大转盘)总结

    百度推广首页demo 在<head>与</head>之间加入代码 <link rel="shortcut icon" href="favic ...

  2. js获取当前url的参数

    可以用正则表达式获取当前url参数,例如: var t={ getQueryString:function(name){ var reg = new RegExp("(^|&)&qu ...

  3. 怎么用API网关构建微服务

    选择将应用程序构建为微服务时,需要确定应用程序客户端如何与微服务交互.在单体应用程序中,只有一组端点.而在微服务架构中,每个微服务都会暴露一组通常是细粒度的端点.在本文中,我们将讨论一下这对客户端与应 ...

  4. Gridview中Datakeys 通过主键取得各列的值。

    首先在初始化Gridview时候定义主键的数组. GridViewTeacherStudent.DataKeyNames=new string[] {"courseId",&quo ...

  5. cocos2d-js 创建帧动画

    封装创建方法 var RunActionHelper = function(){ };RunActionHelper.prototype.createAnimationByPlist = functi ...

  6. MySQLDump 备份 Shell 脚本

    #!/bin/sh - echo "************************************" echo "----Enterprise Cloud Da ...

  7. Git学习笔记整理【图像解析、基础命令、分支、远程仓库】

    Git别名设置:https://www.cnblogs.com/hero123/p/9105381.html Git远程项目公钥配置:https://www.cnblogs.com/hero123/p ...

  8. SCM-MANAGER 应用

    什么是SCM-MANAGER 基于Web的,集成了  Git. Mercurial .Subversion  多种代码管理工具的源代码管理平台 它有什么优点 简易安装 不需要破解配置文件,完全可配置的 ...

  9. 条款44:将与参数无关的代码剥离template

    使用template时,不小心的时候可能就会带来代码膨胀的问题: template<typename T, std::size_t n> class SquareMatrix{ publi ...

  10. PHP用mysql_insert_id()函数获得刚插入数据或当前发布文章的ID

    向mysql 插入数据时,很多时候我们想知道刚刚插入数据的id,这对我们很有用.下面这篇文章就详细给大家介绍了利用mysql_insert_id()函数获得刚插入数据或当前发布文章的ID,有需要的朋友 ...