Python

  1. Theano is a python library for defining and evaluating mathematical expressions with numerical arrays. It makes it easy to write deep learning algorithms in python. On the top of the Theano many more libraries are built.

    1. Keras is a minimalist, highly modular neural network library in the spirit of Torch, written in Python, that uses Theano under the hood for optimized tensor manipulation on GPU and CPU.

    2. Pylearn2 is a library that wraps a lot of models and training algorithms such as Stochastic Gradient Descent that are commonly used in Deep Learning. Its functional libraries are built on top of Theano.

    3. Lasagne is a lightweight library to build and train neural networks in Theano. It is governed by simplicity, transparency, modularity, pragmatism , focus and restraint principles.

    4. Blocks a framework that helps you build neural network models on top of Theano.

  2. Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Center (BVLC) and by community contributors. Google's DeepDream is based on Caffe Framework. This framework is a BSD-licensed C++ library with Python Interface.

  3. nolearn contains a number of wrappers and abstractions around existing neural network libraries, most notablyLasagne, along with a few machine learning utility modules.

  4. Gensim is deep learning toolkit implemented in python programming language intended for handling large text collections, using efficient algorithms.

  5. Chainer bridge the gap between algorithms and implementations of deep learning. Its powerful, flexible and intuitive and is considered as the flexible framework for Deep Learning.

  6. deepnet is a GPU-based python implementation of deep learning algorithms like Feed-forward Neural Nets, Restricted Boltzmann Machines, Deep Belief Nets, Autoencoders, Deep Boltzmann Machines and Convolutional Neural Nets.

  7. Hebel is a library for deep learning with neural networks in Python using GPU acceleration with CUDA through PyCUDA. It implements the most important types of neural network models and offers a variety of different activation functions and training methods such as momentum, Nesterov momentum, dropout, and early stopping.

  8. CXXNET is fast, concise, distributed deep learning framework based on MShadow. It is a lightweight and easy extensible C++/CUDA neural network toolkit with friendly Python/Matlab interface for training and prediction.

  9. DeepPy is a Pythonic deep learning framework built on top of NumPy.

  10. DeepLearning is deep learning library, developed with C++ and python.

  11. Neon is Nervana's Python based Deep Learning framework.

Matlab

  1. ConvNet Convolutional neural net is a type of deep learning classification algorithms, that can learn useful features from raw data by themselves and is performed by tuning its weighs.

  2. DeepLearnToolBox is a matlab/octave toolbox for deep learning and includes Deep Belief Nets, Stacked Autoencoders, convolutional neural nets.

  3. cuda-convnet is a fast C++/CUDA implementation of convolutional (or more generally, feed-forward) neural networks. It can model arbitrary layer connectivity and network depth. Any directed acyclic graph of layers will do. Training is done using the backpropagation algorithm.

  4. MatConvNet  is a MATLAB toolbox implementing Convolutional Neural Networks (CNNs) for computer vision applications. It is simple, efficient, and can run and learn state-of-the-art CNNs

CPP

  1. eblearn is an open-source C++ library of machine learning by New York University’s machine learning lab, led by Yann LeCun. In particular, implementations of convolutional neural networks with energy-based models along with a GUI, demos and tutorials.

  2. SINGA is designed to be general to implement the distributed training algorithms of existing systems. It is supported by Apache Software Foundation.

  3. NVIDIADIGITS is a new system for developing, training and visualizing deep neural networks. It puts the power of deep learning into an intuitive browser-based interface, so that data scientists and researchers can quickly design the best DNN for their data using real-time network behavior visualization.

  4. Intel® Deep Learning Framework provides a unified framework for Intel® platforms accelerating Deep Convolutional Neural Networks.

Java

  1. N-Dimensional Arrays for Java (ND4J)is scientific computing libraries for the JVM. They are meant to be used in production environments, which means routines are designed to run fast with minimum RAM requirements.

  2. Deeplearning4j is the first commercial-grade, open-source, distributed deep-learning library written for Java and Scala. It is designed to be used in business environments, rather than as a research tool.

  3. Encog is an advanced machine learning framework which supports Support Vector Machines,Artificial Neural Networks, Genetic Programming, Bayesian Networks, Hidden Markov Models, Genetic Programming and Genetic Algorithms are supported.

JavaScript

  1. Convnet.js is a Javascript library for training Deep Learning models (mainly Neural Networks) entirely in a browser. No software requirements, no compilers, no installations, no GPUs, no sweat.

Lua

  1. Torch is a scientific computing framework with wide support for machine learning algorithms. It is easy to use and efficient, fast scripting language, LuaJIT, and an underlying C/CUDA implementation. Torch is based on Lua programming language.

Julia

  1. Mocha is a Deep Learning framework for Julia, inspired by the C++ framework Caffe. Efficient implementations of general stochastic gradient solvers and common layers in Mocha could be used to train deep / shallow (convolutional) neural networks, with (optional) unsupervised pre-training via (stacked) auto-encoders. Its best feature include Modular architecture, High-level Interface, portability with speed, compatibility and many more.

Lisp

  1. Lush(Lisp Universal Shell) is an object-oriented programming language designed for researchers, experimenters, and engineers interested in large-scale numerical and graphic applications. It comes with rich set of deep learning libraries as a part of machine learning libraries.

Haskell

  1. DNNGraph is a deep neural network model generation DSL in Haskell.

 

.NET

  1. Accord.NET is a .NET machine learning framework combined with audio and image processing libraries completely written in C#. It is a complete framework for building production-grade computer vision, computer audition, signal processing and statistics applications

R

  1. darch package can be used for generating neural networks with many layers (deep architectures). Training methods includes a pre training with the contrastive divergence method and a fine tuning with common known training algorithms like backpropagation or conjugate gradient.
  2. deepnet implements some deep learning architectures and neural network algorithms, including BP,RBM,DBN,Deep autoencoder and so on.
 
 

Deep Learning Libraries by Language的更多相关文章

  1. Deep Learning for Natural Language Processing1

    Focus, Follow, and Forward Stanford CS224d 课程笔记 Lecture1 Stanford CS224d 课程笔记 Lecture1 Stanford大学在20 ...

  2. Deep Learning for Nature Language Processing --- 第四讲(下)

    A note on matrix implementations 将J对softmax的权重W和每一个word vector进行求导: 尽量使用矩阵运算(向量化).不要使用for loop. 模型训练 ...

  3. Applied Deep Learning Resources

    Applied Deep Learning Resources A collection of research articles, blog posts, slides and code snipp ...

  4. deep learning framework(不同的深度学习框架)

    常用的deep learning frameworks 基本转自:http://www.codeceo.com/article/10-open-source-framework.html 1. Caf ...

  5. (转) Deep Learning Resources

    转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13 ...

  6. SOME USEFUL MACHINE LEARNING LIBRARIES.

    from: http://www.erogol.com/broad-view-machine-learning-libraries/ http://www.slideshare.net/Vincenz ...

  7. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  8. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  9. A Full Hardware Guide to Deep Learning深度学习电脑配置

     https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博 ...

随机推荐

  1. 【ACM】阶乘因式分解(二)

    阶乘因式分解(二) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 给定两个数n,m,其中m是一个素数. 将n(0<=n<=2^31)的阶乘分解质因数,求 ...

  2. SQL SERVER数据库 三种 恢复模式

    SQL SERVER 2005 以后三种恢复模式: 简单(Sample),完全(Full),大批量(Bulk_Logged) 完全备份模型 完全备份模式是指在出现数据文件毁坏时丢失数据的风险最小.如果 ...

  3. docker 镜像保存为文件及从文件导入镜像的方法

    1.保存镜像为文件 docker save -o 要保存的文件名 要保存的镜像 举例: docker save -o 2.从文件载入镜像 docker load --input 文件或者docker ...

  4. python django 基本测试 及调试 201812

    #####20181225 1.python解决SNIMissingWarning和InsecurePlatformWarning警告在想要获取https站点的资源时,会报出SNIMissingWar ...

  5. pat06-图5. 旅游规划(25)

    06-图5. 旅游规划(25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 有了一张自驾旅游路线图,你会知道城市间的高速公路长度.以及该 ...

  6. 文本框只允许输入数字.net/javascript

    <input type="text" name="test" onKeyUp="test1.value=(this.value=this.val ...

  7. Android自定义进度条-带文本(文字进度)的水平进度条(ProgressBar)

    水平进度条,显示进度的文本随着进度而移动. 效果如下,截的静态图. 代码如下 TextProgressBar.java public class TextProgressBar extends Pro ...

  8. Ubuntu18.10安装及优化

    最近机器学习很火,想来学习下,先来搭建一个学习平台. https://www.ubuntu.com 下载最新版本的系统,我这里是 18.10 桌面版. 然后进行分区,我这里在vm只创建了 80G的硬盘 ...

  9. better-scroll 遇到的问题 3 (transition-group 相关)

    今天在使用vue动画 transition-group 和 better-scroll 的时候,出现了下拉列表不能滚动的问题. 问题描述: 我写了一个scroll的基础组件,组件接受一个data参数, ...

  10. 转:清除arcsde空间垃圾数据以及解决sde图层名称被占用的问题

    因为对空间数据管理的不善(非法的删除.重命名等),导致sde中存在一些垃圾数据.和图层名称被占用,这种问题已经有好几个同事问我怎么解决了?现把这个问题已经解决了,下面将整个详细过程写出来,共享给碰到同 ...