穷举算法(Exhaustive Attack method)是最简单的一种算法,其依赖于计算机的强大计算能力来穷尽每一种可能性,从而达到求解问题的目的。穷举算法效率不高,但是适应于一些没有规律可循的场合。

穷举算法基本思想

琼剧算法的基本思想就是从所有可能的情况中搜索正确的答案,其执行步骤如下:

(1)对于一种可能的情况,计算其结果。

(2)判断结果是否符合要求,如果不满足则执行第(1)步来搜索下一个可能的情况;如果符合要求,则表示寻找到一个正确答案。

在使用穷举法时,需要明确问题的答案的范围,这样才可以在指定的范围内搜索答案。指定范围之后,就可以使用循环语句和条件语句逐步验证候选答案的正确性,从而得到需要的正确答案。

穷举算法举例

鸡兔同笼问题最早记载于1500年前的《孙子兵法》,这是一个非常有名的问题。鸡兔同笼的原文如下:

今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只?

这个问题的大致意思是:在一个笼子里关着若干只鸡和若干只兔,从上面数共有35个头,从下面数共有94只脚。问笼中鸡和兔的数量各是多少?

穷举算法

这个问题需要计算鸡的数量和兔的数量,我们通过分析可以知道鸡的数量应该在1~35之间。这样我们可以使用穷举法来逐个判断是否符合,从而搜索答案。

采用穷举法求解鸡兔同笼问题的程序示例代码如下:

/*
输入参数head是笼中头的总数,foot是笼中脚的总数,chicken是鸡的总数,rabbit是兔的总数
返回结果为0,表示没有搜索到符合条件的结果;
返回结果为1,表示搜索到了符合条件的结果
*/
int qiongju(int head,int foot,int *chicken,int * rabbit)
{
int re,i,j;
re=0;
for(i=0;i<=head,i++) //进行循环
{
j=head-i;
if(i*2+j*4==foot) //进行判断
{
re=1; //找到答案
*chicken=i;
*rabbit=j;
}
}
return re;
}

穷举算法求解鸡兔同笼问题

完整的琼剧算法求解鸡兔同笼问题的程序代码如下:

#include<iostream>
using namespace std;
/*
输入参数head是笼中头的总数,foot是笼中脚的总数,chicken是鸡的总数,rabbit是兔的总数
返回结果为0,表示没有搜索到符合条件的结果;
返回结果为1,表示搜索到了符合条件的结果
*/
int qiongju(int head,int foot,int *chicken,int * rabbit)
{
int re,i,j;
re=0;
for(i=0;i<=head;i++) //进行循环
{
j=head-i;
if(i*2+j*4==foot) //进行判断
{
re=1; //找到答案
*chicken=i;
*rabbit=j;
}
}
return re;
}
int main()
{
int chicken,rabbit,head,foot;
int re;
cout<<"穷举法求解鸡兔同笼问题:"<<endl;
cout<<"请输入头数:";
cin>>head;
cout<<"请输入脚数:";
cin>>foot;
re=qiongju(head,foot,&chicken,&rabbit);
if(re==1)
{
cout<<"鸡有"<<chicken<<"只,兔有"<<rabbit<<"只。"<<endl;
}
else
{
cout<<"无法求解!"<<endl;
}
return 0;
}

程序中,首先由用户输入头的总数和脚的总数,然后调用穷举法求解鸡兔同笼问题的函数,最后输出结果。

执行该程序,按照题目的要求输入数据,输出结果。

基本算法思想之穷举法(C++语言描述)的更多相关文章

  1. 通过穷举法快速破解excel或word加密文档最高15位密码

    1.打开文件 2.工具 --- 宏 ---- 录制新宏 --- 输入名字如 :aa 3.停止录制 ( 这样得到一个空宏 ) 4.工具 --- 宏 ---- 宏 , 选 aa, 点编辑按钮 5.删除窗口 ...

  2. for循环语句以及迭代法和穷举法

    循环语句: 四要素:初始条件,循环条件,状态改变,循环体 for(初始条件;循环条件;状态改变){ //循环体} 案例1:打印等腰直角三角形和菱形 左上三角 static void Main(stri ...

  3. C#4 for循环 迭代法 穷举法应用

    for()循环. 四要素: 初始条件,循环条件,状态改变,循环体. 执行过程: 初始条件--循环条件--循环体--状态改变--循环条件.... 注意:for的小括号里面分号隔开,for的小括号后不要加 ...

  4. C# for 循环 迭代法 穷举法

    for()循环. 四要素: 初始条件,循环条件,状态改变,循环体. 执行过程: 初始条件--循环条件--循环体--状态改变--循环条件.... 注意:for的小括号里面分号隔开,for的小括号后不要加 ...

  5. 【2-24】for循环嵌套,跳转语句,异常语句,穷举法、迭代法

    For循环嵌套与if嵌套相似,是在for中再套for,其结构如下: For(;;) { For(;;){} }经典题型为打印星星例: Console.Write("请输入一个奇数:" ...

  6. 穷举法、for循环、函数、作用域、斐波那契数

    1.穷举法 枚举所有可能性,直到得到正确的答案或者尝试完所有值. 穷举法经常是解决问题的最实用的方法,它实现起来热别容易,并且易于理解. 2.for循环 for语句一般形式如下: for variab ...

  7. C# 异常语句 跳转语句 while循环 穷举法 迭代法

    一  异常语句   ♦ try.....catch....finally 结构形式 try{ 可能会出错的代码语句 如果这里出错了,那么不会在继续下面的代码,而是直接进入catch中处理异常}catc ...

  8. python 穷举法 算24点(史上最简短代码)

    本来想用回溯法实现 算24点.题目都拟好了,就是<python 回溯法 子集树模板 系列 -- 7.24点>.无奈想了一天,没有头绪.只好改用暴力穷举法. 思路说明 根据四个数,三个运算符 ...

  9. HDU 1017 A Mathematical Curiosity【看懂题意+穷举法】

    //2014.10.17    01:19 //题意: //先输入一个数N,然后分块输入,每块输入每次2个数,n,m,直到n,m同一时候为零时  //结束,当a和b满足题目要求时那么这对a和b就是一组 ...

随机推荐

  1. [原创]java WEB学习笔记43:jstl 介绍,core库详解:表达式操作,流程控制,迭代操作,url操作

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  2. 【leetcode刷题笔记】Linked List Cycle

    Given a linked list, determine if it has a cycle in it. Follow up:Can you solve it without using ext ...

  3. python内置方法补充any

    any(iterable) 版本:该函数适用于2.5以上版本,兼容python3版本. 说明:如果iterable的任何元素不为0.''.False,all(iterable)返回True.如果ite ...

  4. 在Ubuntu上为Android系统的Application Frameworks层增加硬件访问服务【转】

    本文转载自:http://blog.csdn.net/luoshengyang/article/details/6578352 在数字科技日新月异的今天,软件和硬件的完美结合,造就了智能移动设备的流行 ...

  5. hihocoder #1032 : 最长回文子串【 manacher算法实现 】

    #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...

  6. Charles进行HTTPS抓包(iOS为例)

    各种抓包工具的原理都是一样的,使用方面也都是差不多的,因为最近在用Mac,所以抓包工具开始用Charles了,记录一下抓取HTTPS的步骤. 连接代理, 开启抓包工具, 手机设置代理服务器,端口号(默 ...

  7. SQL 优化案例

    create or replace procedure SP_GET_NEWEST_CAPTCHA( v_ACCOUNT_ID in VARCHAR2, --接收短信的手机号 v_Tail_num i ...

  8. vc中调用Com组件的所有方法详解

    首先,对于Com组件的入门学习,可以看一下<Windows程序设计技术基础——MFC与.NET> 任哲编著的21世纪重点大学规划教材那本书,适合入门(虽然不一定会使用),了解些基础原理. ...

  9. GIT使用[git remove untracked working file]

    使用GIT进行merge的时候, git merge --no-ff master 如果merge之后出现问题, 想进行回退, 可以使用 git reset --hard HEAD 来回退到最新的版本 ...

  10. 大话设计模式--职责连模式 Chain of Resposibility -- C++实现实例

    1. 职责链模式: 使多个对象都有机会处理请求,从而避免请求发送者和接受者之间的耦合关系,将这个对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它. 当客户提交一个请求时,请求是沿着链传递直 ...