【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割
题目描述
一个n*n*n的立方体,每个位置为0或1。有些位置已经确定,还有一些需要待填入。问最后可以得到的 相邻且填入的数不同的点对 的数目最大。
输入
第一行包含一个数N,表示魔方的大小。 接下来 N2 行,每行N个字符,每个字符有三种可能: P:表示此方格已经填充了正能量水晶; N:表示此方格已经填充了负能量水晶; ?:表示此方格待填充。 上述 N*N 行,第(i-1)*N+1~i*N 行描述了立方体第 i 层从前到后,从左到右的 状态。且每 N 行间,都有一空行分隔。
输出
仅包含一行一个数,表示魔方最多能产生的能量
样例输入
2
P?
??
??
N?
样例输出
9
题解
网络流最小割
经典的最小割建模了,这里讲一下做法吧:
由于要求数目最大,因此将其转化为 总可能数目-不满足条件的数目 ,于是就是要最小化不满足条件的数目。
考虑什么样的不满足条件:选择相同。因此当选择相同时应产生1的代价,最小化这个代价,即最小割问题。
对立方体黑白染色,然后:
对于白点:如果确定了为0则S向其连容量为inf的边,如果确定了为1则其向T连容量为inf的边;
对于黑点:反转源汇,即0连T,1连S。
对于相邻的两个点,在它们之间连容量为1的双向边。
跑最小割即为最小的不满足条件的数目。
讲道理这种经典建模现在看来还是蛮简单的。
#include <queue>
#include <cstdio>
#include <cstring>
#define N 125010
#define M 1500010
#define inf 1 << 30
#define pos(i , j , k) (i - 1) * n * n + (j - 1) * n + k
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
char str[60];
inline void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = z , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , i , j , k , ans = 0;
scanf("%d" , &n) , s = 0 , t = n * n * n + 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= n ; j ++ )
{
scanf("%s" , str + 1);
for(k = 1 ; k <= n ; k ++ )
{
if((i + j + k) & 1)
{
if(str[k] == 'P') add(s , pos(i , j , k) , inf);
if(str[k] == 'N') add(pos(i , j , k) , t , inf);
}
else
{
if(str[k] == 'P') add(pos(i , j , k) , t , inf);
if(str[k] == 'N') add(s , pos(i , j , k) , inf);
if(i > 1) add(pos(i , j , k) , pos(i - 1 , j , k) , 1) , ans ++ ;
if(i < n) add(pos(i , j , k) , pos(i + 1 , j , k) , 1) , ans ++ ;
if(j > 1) add(pos(i , j , k) , pos(i , j - 1 , k) , 1) , ans ++ ;
if(j < n) add(pos(i , j , k) , pos(i , j + 1 , k) , 1) , ans ++ ;
if(k > 1) add(pos(i , j , k) , pos(i , j , k - 1) , 1) , ans ++ ;
if(k < n) add(pos(i , j , k) , pos(i , j , k + 1) , 1) , ans ++ ;
}
}
}
}
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}
【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割的更多相关文章
- BZOJ1976: [BeiJing2010组队]能量魔方 Cube
1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 832 Solved: 281[Submi ...
- 【BZOJ1976】[BeiJing2010组队]能量魔方 Cube 最小割
[BZOJ1976][BeiJing2010组队]能量魔方 Cube Description 小C 有一个能量魔方,这个魔方可神奇了,只要按照特定方式,放入不同的 能量水晶,就可以产生巨大的能量. 能 ...
- Bzoj 1976: [BeiJing2010组队]能量魔方 Cube 最小割,最大流
1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 879 Solved: 304[Submi ...
- BZOJ 1976 能量魔方 Cube(最小割)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1976 题意:给出一个n*n*n的立方体.每个小单位为字母P或者字母N.相邻两个小单位字母 ...
- 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色
1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 884 Solved: 307[Submi ...
- 【题解】 bzoj3894: 文理分科 (网络流/最小割)
bzoj3894,懒得复制题面,戳我戳我 Solution: 首先这是一个网络流,应该还比较好想,主要就是考虑建图了. 我们来分析下题面,因为一个人要么选文科要么选理科,相当于两条流里面割掉一条(怎么 ...
- 【bzoj3774】最优选择 网络流最小割
题目描述 小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的.一个点如果被选择了,那么可以得到Bij ...
- 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...
- 【bzoj1797】[Ahoi2009]Mincut 最小割 网络流最小割+Tarjan
题目描述 给定一张图,对于每一条边询问:(1)是否存在割断该边的s-t最小割 (2)是否所有s-t最小割都割断该边 输入 第一行有4个正整数,依次为N,M,s和t.第2行到第(M+1)行每行3个正 整 ...
随机推荐
- 【Java】多线程相关复习—— 线程的创建、名字、运行情况以及顺序控制(join方法) 【一】
一.创建线程的三种方式 · 继承Thread类 · 实现Runnable接口 · 实现Callable接口 二. 线程状态 · 线程名字 getName() · 线程活动情况 isAlive() · ...
- html css javascript 知识点总结 bom js 操作标签 文本 节点 表格各行变色 悬停变色 省市联动 正则
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- 总结JavaScript常用数组操作方法,包含ES6方法
一.concat() concat() 方法用于连接两个或多个数组.该方法不会改变现有的数组,仅会返回被连接数组的一个副本. var arr1 = [1,2,3]; var arr2 = [4,5]; ...
- 最大公约数(gcd模板)
int gcd(int a,int b) { ) { int t=a%b; a=b; b=t; } return a; }
- matlab2018a安装后帮助文档打不开解决方法
安装matlab2018a破解版后,帮助文档提示需要许可证问题(破解版没有可用许可证): 解决方法是把文档设置为离线即可(预设---->帮助---->安装在本地---->小窗口)
- Servlet学习笔记06——什么是转发,路径,状态管理?
1.include指令 (1)作用: 告诉容器,在将jsp转换成Servlet时,将 某个文件的内容插入到该指令所在的位置. (2)语法: <%@ include file="&quo ...
- Mysql: pt-table-checksum 和 pt-table-sync 检查主从一致性,实验过程
一.安装 percona 包 1.安装仓库的包 https://www.percona.com/doc/percona-repo-config/yum-repo.html sudo yum insta ...
- JAVA实现RSA加密,非对称加密算法
RSA.java package org.icesnow.jeasywx.util.security; import java.security.Key; import java.security.K ...
- Python生成器、装饰器
## 生成器 - 生成器是用来创建Python序列的一个对象 - 通常生成器是为迭代器产生数据的 - 例如range()函数就是一个生成器 - 每次迭代生成器时,它都会记录上一次调用的位置,并返回下一 ...
- tcl之正则表达式