HDU 3613 Best Reward(拓展KMP算法求解)
题目链接:
https://cn.vjudge.net/problem/HDU-3613
One of these treasures is a necklace made up of 26 different kinds
of gemstones, and the length of the necklace is n. (That is to say: n
gemstones are stringed together to constitute this necklace, and each of
these gemstones belongs to only one of the 26 kinds.)
In accordance with the classical view, a necklace is valuable if
and only if it is a palindrome - the necklace looks the same in either
direction. However, the necklace we mentioned above may not a palindrome
at the beginning. So the head of state decide to cut the necklace into
two part, and then give both of them to General Li.
All gemstones of the same kind has the same value (may be positive
or negative because of their quality - some kinds are beautiful while
some others may looks just like normal stones). A necklace that is
palindrom has value equal to the sum of its gemstones' value. while a
necklace that is not palindrom has value zero.
Now the problem is: how to cut the given necklace so that the sum of the two necklaces's value is greatest. Output this value.
the number of test cases. The description of these test cases follows.
For each test case, the first line is 26 integers: v
1, v
2, ..., v
26 (-100 ≤ v
i ≤ 100, 1 ≤ i ≤ 26), represent the value of gemstones of each kind.
The second line of each test case is a string made up of charactor
'a' to 'z'. representing the necklace. Different charactor representing
different kinds of gemstones, and the value of 'a' is v
1, the value of 'b' is v
2, ..., and so on. The length of the string is no more than 500000.
OutputOutput a single Integer: the maximum value General Li can get from the necklace.Sample Input
2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
aba
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
acacac
Sample Output
1
6
解题思路:
问题的关键还是如何判断从某个位置分割开后,前缀和后缀是否是回文串
这次采用拓展kmp算法求解,关于拓展kmp的介绍请参考另一篇博客:https://www.cnblogs.com/wenzhixin/p/9355480.html
先将s1反转赋值给s2,用s1去匹配s2,得到s2中每个后缀与s1的最长公共前缀数组extpre
用s2去匹配s1,得到s1中每个后缀与s2的最长公共前缀数组extpos
再枚举每一个分割点,判断,求值,更新答案取最优。
关键是如何使用extend数组,举个例子来说
abcde
当分割长度为2的时候,需要分别判断ab和bcde是否是回文串
先看ab,要看ab是否是回文串需要用到extpre数组,为什么用到它而不是另一个分析如下:
用s2去匹配s1制作的到extpre数组
s2 edcba
s1 abcde
要判断ab是否是回文串,就是看ba与s1的最长公共前缀是多少,如果恰好是ba的长度,就说明ba在原串中存在。也即extpre[ls - i] == i(其中ls是串的总长度)。同时又有两者逆序,必然是回文串。
再看bcde是否是回文串
用s1去匹配s2制作的到extpos数组
s1 abcde
s2 edcba
要判断bcde是否是回文串,就要看bcde与s2的最长公共前缀是多少,如果恰好是dcde的长度,就说明bcde在反串中存在。也即extpre[i] == ls - i(其中ls是串的总长度)。同时又有两者逆序,必然是回文串。
这样就完成了,是否是回文串的判断。
代码实现:
#include<cstdio>
#include<cstring> const int maxn = ;
int val[], presum[maxn], next[maxn], extpre[maxn], extpos[maxn];
char s1[maxn], s2[maxn]; void exkmp(char s[], char t[], int len, int ex[]);
void get_next(char t[], int len); int main()
{
int T;
scanf("%d", &T); while(T--){
for(int i = ; i < ; i++){
scanf("%d", &val[i]);
}
scanf("%s", s1);
int ls = strlen(s1);
presum[] = ;
for(int i = ;i < ls; i++){
s2[ls - - i] = s1[i];
presum[i + ] = presum[i] + val[s1[i] - 'a'];
}
s2[ls] = '\0'; exkmp(s2, s1, ls, extpre);//拿s1去匹配s2,得到s2中每个后缀与s1的最长公共前缀数组extpre
exkmp(s1, s2, ls, extpos);//拿s2去匹配s1,得到s1中每个后缀与s2的最长公共前缀数组extpos int ans = -;
for(int i = ; i <= ls - ; i++){//在长度为 i 处分割
int sum = ;
if(extpre[ls - i] == i)
sum += presum[i];
if(extpos[i] == ls - i)
sum += presum[ls] - presum[i];
if(sum > ans)
ans = sum;
}
printf("%d\n", ans);
}
return ;
} void get_next(char t[], int len){
next[] = len;
int k = ;
while(k < len && t[k] == t[k - ])
k++;
next[] = k; int po = ;
for(k = ; k< len; k++){
if(next[k - po] + k < next[po] + po)
next[k] = next[k - po];
else{
int j = next[po] + po - k;
if(j < )
j = ;
while(k + j < len && t[k] == t[k + j])
j++; next[k] = j;
po = k;
}
} } void exkmp(char s[], char t[], int len, int ex[])
{
memset(next, , sizeof(next));
get_next(t, len); int k=;
while(k < len && s[k] == t[k])
k++;
ex[] = k; int po = ;
for(k = ; k< len; k++){
if(next[k - po] + k < ex[po] + po)
ex[k] = next[k - po];
else{
int j = ex[po] + po - k;
if(j < )
j = ; while(k + j < len && j < len && s[k + j] == t[j])
j++;
ex[k] = j;
po = k;
}
}
}
HDU 3613 Best Reward(拓展KMP算法求解)的更多相关文章
- HDU 3613 Best Reward ( 拓展KMP求回文串 || Manacher )
题意 : 给个字符串S,要把S分成两段T1,T2,每个字母都有一个对应的价值,如果T1,T2是回文串,那么他们就会有一个价值,这个价值是这个串的所有字母价值之和,如果不是回文串,那么这串价值就为0.问 ...
- HDU 3613 Best Reward(扩展KMP求前后缀回文串)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3613 题目大意: 大意就是将字符串s分成两部分子串,若子串是回文串则需计算价值,否则价值为0,求分割 ...
- hdu 3613 Best Reward (manachar算法)
Best Reward Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Prob ...
- HDU 3613 Best Reward 正反两次扩展KMP
题目来源:HDU 3613 Best Reward 题意:每一个字母相应一个权值 将给你的字符串分成两部分 假设一部分是回文 这部分的值就是每一个字母的权值之和 求一种分法使得2部分的和最大 思路:考 ...
- 拓展KMP算法详解
拓展KMP解决的问题是给两个串S和T,长度分别是n和m,求S的每一个后缀子串与T的最长公共前缀分别是多少,记作extend数组,也就是说extend[i]表示S[i,n-1](i从0开始)和T的最长公 ...
- HDU - 3613 Best Reward(manacher或拓展kmp)
传送门:HDU - 3613 题意:给出26个字母的价值,然后给你一个字符串,把它分成两个字符串,字符串是回文串才算价值,求价值最大是多少. 题解:这个题可以用马拉车,也可以用拓展kmp. ①Mana ...
- 扩展KMP --- HDU 3613 Best Reward
Best Reward Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=3613 Mean: 给你一个字符串,每个字符都有一个权 ...
- hdu 3613"Best Reward"(Manacher算法)
传送门 题意: 国王为了犒劳立下战功的大将军Li,决定奖给Li一串项链,这个项链一共包含26中珠子"a~z",每种珠子都有 相应的价值(-100~100),当某个项链可以构成回文时 ...
- Best Reward 拓展kmp
Problem Description After an uphill battle, General Li won a great victory. Now the head of state de ...
随机推荐
- Swift3 页面顶部实现拉伸效果代码
//懒加载 //顶部需要拉伸自定义视图 lazy var headView:MyHeaderView = { //let hframe = CGRect(x: 0, y: 0, width: swid ...
- Python--随机生成指定长度的密码
在浏览别人博客时学习了random模块,手痒自我练习下,写个随机生成指定长度的密码字符串的函数,拿出来供各位参考: 废话不多说,上代码: # coding: utf-8 import random i ...
- Winform文件上传
近期在做了一个winform的项目的附件上传的需求 最初项目选型的时候有三种 1.使用webservice.webapi上传文件 2,直接保存在数据库中 3.使用共享目录+dos命令 第一种有文件大小 ...
- DDD Code First 迁移数据实现EF CORE的软删除,值对象迁移配置
感谢Jeffcky大佬的博客: EntityFramework Core 2.0全局过滤 (HasQueryFilter) https://www.cnblogs.com/CreateMyself/p ...
- 基于tkinter的九型人格测试系统介绍
基于tkinter的九型人格测试系统介绍 一.程序代码地址,GitHub 二.程序介绍 1.login.py 登录界面: 注册界面: 2.mainWindow.py 登录成功之后的界面: 3.doTe ...
- Linux系统软件包的管理(4)
虽然使用源码编译安装可以具有提高速度个性化的定制等优点,但对于 Linux发行商来说,则不容易管理软件包,毕竟不是每个人都会进行源码编译的,如果能够将软件预先在相同的硬体与系统上面编译好在发布的话,不 ...
- 13_python_内置函数
- 协程 coroutine
参考链接: http://manual.luaer.cn/2.11.html http://www.cnblogs.com/riceball/archive/2008/01/03/1025158.ht ...
- win7 配置Windows Update 失败,还原更改,无法进入系统
win7 配置Windows Update 失败,还原更改,无法进入系统 win7 系统安装好后,忘记了需要关闭自动更新,某天自动更新补丁安装失败,进入下图状态,无法进入正常系统. 解决方案一:使用+ ...
- javaScript中BOM
BOM是browser object model的缩写,简称浏览器对象模型 主要处理浏览器窗口(window)和框架(iframe),简述了与浏览器进行交互的方法和接口, 可以对浏览器窗口进行访问和操 ...