luogu P1891 疯狂LCM
嘟嘟嘟
这题跟上一道题有点像,但是我还是没推出来……菜啊
ans
&= \sum_{i = 1} ^ {n} \frac{i * n}{gcd(i, n)} \\
&= n * \sum_{d | n} \sum_{i = 1} ^ {n} [gcd(i, n) = d] * \frac{i}{d} \\
&= n * \sum_{d | n} \sum_{i = 1} ^ {\frac{n}{d}} [gcd(i, n) = 1] * i \\
\end{align*}\]
令\(f(n)\)表示小于等于\(n\)且与\(n\)互质的数的和,则
ans
&= n * \sum_{d | n} f(\frac{n}{d}) \\
&= n * \sum_{d | n} f(d)
\end{align*}\]
如果\(i\)与\(n\)互质,那么\(n - i\)一定也和\(n\)互质,所以\(\varphi(n)\)个数两两配对等于\(n\),得到\(f(n) = \frac{\varphi(n) * n}{2}\)。
但是这对\(1\)不成立,因此要特别处理\(f(1) = 1\),于是
\]
这个时候可以每一次\(O(\sqrt{n})\)枚举\(n\)的约数,总复杂度\(O(n + T *\sqrt{n} )\),但是还可以再优化:我们像埃氏筛素数一样,\(O(n \log{n})\)预处理\(f(i)\)。然后\(O(1)\)询问。
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e6 + 5;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
int n;
int prim[maxn], v[maxn], phi[maxn];
ll ans[maxn];
void init()
{
phi[1] = 1;
for(int i = 2; i < maxn; ++i)
{
if(!v[i]) v[i] = i, phi[i] = i - 1, prim[++prim[0]] = i;
for(int j = 1; j <= prim[0] && i * prim[j] < maxn; ++j)
{
v[i * prim[j]] = prim[j];
if(i % prim[j] == 0)
{
phi[i * prim[j]] = phi[i] * prim[j];
break;
}
else phi[i * prim[j]] = phi[i] * (prim[j] - 1);
}
}
for(int i = 1; i < maxn; ++i)
for(int j = 1; i * j < maxn; ++j)
ans[i * j] += (ll)phi[i] * i;
for(int i = 1; i < maxn; ++i) ans[i] = (ans[i] + 1) * i >> 1;
}
int main()
{
init();
int T = read();
while(T--) n = read(), write(ans[n]), enter;
return 0;
}
luogu P1891 疯狂LCM的更多相关文章
- P1891 疯狂LCM
\(\color{#0066ff}{ 题目描述 }\) 众所周知,czmppppp是数学大神犇.一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了... 给定正整数N,求LCM(1,N)+LCM(2,N ...
- 洛谷 - P1891 - 疯狂LCM - 线性筛
另一道数据范围不一样的题:https://www.cnblogs.com/Yinku/p/10987912.html $F(n)=\sum\limits_{i=1}^{n} lcm(i,n) $ $\ ...
- 题解:洛谷P1891 疯狂LCM
原题链接 题目描述 描述: 众所周知,czmppppp是数学大神犇.一天,他给众蒟蒻们出了一道数论题,蒟蒻们都惊呆了... 给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N) ...
- 洛谷 P1891 疯狂LCM 题解
原题链接 享受推式子的乐趣吧 数论真有趣! 庆祝:数论紫题第 \(3\) 道. \[\sum_{i=1}^n \operatorname{lcm}(i,n) \] \[= \sum_{i=1}^n \ ...
- 洛咕 【P1891】疯狂LCM & 三倍经验
经验给掉先: 经验*1 经验*2 经验*3 这里给个跑得比较慢的 \(n \sqrt n\) 预处理然后 \(O(1)\) 回答询问的做法 式子 首先我们推柿子: \[\begin{aligned}A ...
- luogu1891 疯狂lcm ??欧拉反演?
link 给定正整数N,求LCM(1,N)+LCM(2,N)+...+LCM(N,N). 多组询问,1≤T≤300000,1≤N≤1000000 \(\sum_{i=1}^nlcm(i,n)\) \( ...
- luogu P1616 疯狂的采药
题目背景 此题为NOIP2005普及组第三题的疯狂版. 此题为纪念LiYuxiang而生. 题目描述 LiYuxiang是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师.为此,他想拜附近最有威望的 ...
- [Luogu1891]疯狂LCM[辗转相减法]
题意 多组询问,每次给定 \(n\) ,求:\(\sum_{i=1}^nlcm(i,n)\) . \(\rm T \leq 3\times 10^4\ ,n \leq 10^6\). 分析 推式子: ...
- 疯狂LCM
传送门 题目要求求: \[\sum_{i=1}^nlcm(i,n)\] 先转化成gcd处理: \[n\sum_{i=1}^n\frac{i}{gcd(i,j)}\] 之后老套路 枚举gcd,并且先把d ...
随机推荐
- 编译java代码出现 错误: 需要class, interface或enum 提示
出现这种错误: 需要class, interface或enum 提示,一般分两种情况: 1.代码编写有误: 2.编码器选择编码格式有问题.(主要是用非记事本编写代码文件,存在编码格式转换问 ...
- python-责任链模式
源码地址:https://github.com/weilanhanf/PythonDesignPatterns 说明: 当你作为一名coder已经快三十却还还没有女朋友,家中父母已经着急万分,此时要求 ...
- apicloud 第一篇
最近公司需要开发一款app,说实话,之前也只是对Android有过一部分的了解,ios基本上都毛都不知道,所以作为小公司的我们经过商议决定使用apicloud,虽然用户体验不如原生的好,但谁叫我们穷, ...
- centos7下docker发布第一个微服务应用(Eureka)
1.在windows下打包 微服务应用通过maven进行打包,在项目的pom.xml执行mvn clean package,或者直接通过idea或者eclipse进行maven打包 之上操作将在项目的 ...
- PHP中NOTICE错误常见解决方法
对于初学者,肯定会遇到不同的错误提示,比如:警告,致命,等等,其中NOTICE错误等级最低,页面中,好多类似 Notice: Use of undefined constant title - ass ...
- requireJS基本概念及使用流程(2)
上一篇我们一起研究了研究requireJS,这一篇我们来说一说requireJS具体的使用过程 其实很简单的,我总结了总结就是分为四步走 第一步:在页面中引入requireJS并且引入入口文件 第二步 ...
- Atitit.播放系统规划新版本 and 最近版本回顾 v3 pbf.doc 1 版本11 (ing)41.1 规划h5本地缓存系列 41.2 Android版本app41.3 双类别系统,
Atitit.播放系统规划新版本 and 最近版本回顾 v3 pbf.doc 1 版本11 (ing)4 1.1 规划h5本地缓存系列 4 1.2 Android版本app4 1.3 双类别系统, ...
- JAVA 实现 QQ 邮箱发送验证码功能(不局限于框架)
JAVA 实现 QQ 邮箱发送验证码功能(不局限于框架) 本来想实现 QQ 登录,有域名一直没用过,还得备案,好麻烦,只能过几天再更新啦. 先把实现的发送邮箱验证码更能更新了. 老规矩,更多内容在注释 ...
- [Android] 修图工具Draw9patch使用小结(附ubuntu快捷截图方法)
做项目的时候,素材图遇到点问题,然后老大大概给我讲了讲android下面图片格式.9.png和draw 9-patch的用法,感觉很清楚也很有用,所以记录一下. 原文地址请保留http://www.c ...
- linux设置永久环境变量
vi /etc/profile 文件最后输入export PATH=$PATH:/usr/abc/def/ 保存 输入source /etc/profile刷新刚刚修改过的环境变量文件