SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)
4491. Primes in GCD TableProblem code: PGCD |
Johnny has created a table which encodes the results of some operation -- a function of two arguments. But instead of a boring multiplication table of the sort you learn by heart at prep-school, he has created a GCD (greatest common divisor) table! So he now has a table (of height a and width b), indexed from (1,1) to (a,b), and with the value of field (i,j) equal to gcd(i,j). He wants to know how many times he has used prime numbers when writing the table.
Input
First, t ≤ 10, the number of test cases. Each test case consists of two integers, 1 ≤ a,b < 107.
Output
For each test case write one number - the number of prime numbers Johnny wrote in that test case.
Example
Input:
2
10 10
100 100
Output:
30
2791
题解参考:
http://quartergeek.com/eight-gcd-problems/
ans = sigma(p, sigma(d, μ(d) * (n/pd) * (m/pd)))
Let s = pd, then
ans = sigma(s, sigma(p, μ(s/p) * (n/s) * (m/s)))
= sigma(s, (n/s) * (m/s) * sigma(p, μ(s/p)))
Let g(x) = sigma(p, μ(x/p)), then
ans = sigma(s, (n/s) * (m/s) * g(s))
如果我们能预处理g(x)的话就能和前面一样分块搞了。这个时候我们多么希望g(x)和μ(x)一样是积性函数。看完题解后,发现有一个不是积性函数,胜似积性函数的性质。由于题解没有给证明,所以就意淫了一个证明。
考虑质数p',g(p'x) = sigma(p | p'x, μ(p'x/p))。
- 当
x % p' == 0,那么考虑sigma中的变量p的所有取值,它和g(x)中p是相同的。而μ(x)这个函数,如果x有平方因子的话就等于0,因此当p != p'时μ(p'x/p) = 0,当p == p'是,μ(p'x/p) = μ(x)。所以g(p'x) = μ(x)。 - 当
x % p' != 0,同样考虑p,会发现它的取值只比g(x)中的p多出一个p'。同理按照p是否等于p'讨论,可以得到g(p'x) = -g(x) + μ(x)。
因此g(x)可以在线性筛素数的时候算出。剩下的就是前缀和、分块了。
/* ***********************************************
Author :kuangbin
Created Time :2013-10-19 22:01:05
File Name :E:\2013ACM\专题学习\数学\莫比乌斯反演\SPOJ_PGCD.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std; const int MAXN = ;
bool check[MAXN+];
int prime[MAXN+];
int mu[MAXN+];
int g[MAXN+];
int sum[MAXN+];
void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MAXN; i++)
{
if(!check[i])
{
prime[tot++] = i;
mu[i] = -;
g[i] = ;
}
for(int j = ;j < tot;j++)
{
if(i * prime[j] > MAXN)break;
check[i*prime[j]] = true;
if(i % prime[j] == )
{
mu[i * prime[j]] = ;
g[i * prime[j]] = mu[i];
break;
}
else
{
mu[i * prime[j]] = -mu[i];
g[i * prime[j]] = -g[i] + mu[i];
}
}
}
sum[] = ;
for(int i = ;i <= MAXN;i++)
sum[i] = sum[i-] + g[i];
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
Moblus();
int T;
int n,m;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
if(n > m)swap(n,m);
long long ans = ;
int last = ;
for(int i = ;i <= n;i = last+)
{
last = min(n/(n/i),m/(m/i));
ans += (long long)(sum[last] - sum[i-])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return ;
}
SPOJ PGCD 4491. Primes in GCD Table && BZOJ 2820 YY的GCD (莫比乌斯反演)的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)
首先我们来看一道题 BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 【刷题】BZOJ 2820 YY的GCD
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- ●BZOJ 2820 YY的GCD
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题解: 莫比乌斯反演 先看看这个题:HDU 1695 GCD(本题简化版) HDU 1 ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820 YY的GCD(莫比乌斯函数)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2820 题意:给定n,m.求1<=x<=n, 1<=y<=m且Gc ...
随机推荐
- spring Mvc 执行原理 及 xml注解配置说明 (六)
Spring MVC 执行原理 在 Spring Mvc 访问过程里,每个请求都首先经过 许多的过滤器,经 DispatcherServlet 处理; 一个Spring MVC工程里,可以配置多个的 ...
- HDU 1501 Zipper 字符串
题目大意:输入有一个T,表示有T组测试数据,然后输入三个字符串,问第三个字符串能否由第一个和第二个字符串拼接而来,拼接的规则是第一个和第二个字符串在新的字符串中的前后的相对的顺序不能改变,问第三个字符 ...
- zookeeper笔记之基于zk实现分布式锁
一.分布式锁概述 Java中基于AQS框架提供了一系列的锁,但是当需要在集群中的多台机器上互斥执行一段代码或使用资源时Java提供的这种单机锁就没了用武之地,此时需要使用分布式锁协调它们.分布式锁有很 ...
- 通过图片获取gps地理位置
别人说通过一张照片就可以定位你的位置,看来个视频,仔细研究了一下自己的照片没想到真的可以做到,想想真的有点可怕. 如何通过一张照片去定位这张照片的经纬度下面我以我手机中的照片为例. 我们通过pytho ...
- 基于滑动窗口协议写的程序(UDP实现) .
正好有一个大作业关于用socket实现滑动窗口协议,所以写了一个,模拟接收方与发送方窗口都是2,用两个线程实现. 下面是代码,注释的比较详细了. socket_udp.h #include<st ...
- Node.js模块定义总结
为了让Node.js的文件可以相互调用,Node.js提供了一个简单的模块系统.模块是Node.js 应用程序的基本组成部分,文件和模块是一一对应的.换言之,一个 Node.js 文件就是一个模块,这 ...
- hdu 5443 (2015长春网赛G题 求区间最值)
求区间最值,数据范围也很小,因为只会线段树,所以套了线段树模板=.= Sample Input3110011 151 2 3 4 551 21 32 43 43 531 999999 141 11 2 ...
- Android Studio从2.3升级到3.1注意事项
原文:https://blog.csdn.net/lithiumyoung/article/details/80111111 Android Studio从2.3升级到3.1注意事项 项目根目录下的b ...
- Eclipse代码注释模板-code template
参考帖子blog.csdn.net/security08/article/details/5588013 操作步骤:打开Window->Preferences->Java->Code ...
- 【BZOJ】3640: JC的小苹果
题解 我们考虑列出期望方程组,\(dp[i][j]\)表示在第\(i\)个点血量为\(j\)的时候到达\(N\)点的概率,所有的\(dp[N][j]\)都是1,所有\(j < 0\)都是0 答案 ...