转载:https://blog.csdn.net/u010665216/article/details/78528261

首先,我们直接构造赛题结果:真实数据与预测数据:

predictions = [0.9, 0.3, 0.8, 0.75, 0.65, 0.6, 0.78, 0.7, 0.05, 0.4, 0.4, 0.05, 0.5, 0.1, 0.1]
actual = [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

我们将预测值从小到大排列:

data = zip(actual, predictions)
sorted_data = sorted(data, key=lambda d: d[1])
sorted_actual = [d[0] for d in sorted_data]
print('Sorted Actual Values', sorted_actual)

我们对排序后的真实值累计求和:

cumulative_actual = np.cumsum(sorted_actual)
cumulative_index = np.arange(1, len(cumulative_actual)+1) plt.plot(cumulative_index, cumulative_actual)
plt.xlabel('Cumulative Number of Predictions')
plt.ylabel('Cumulative Actual Values')
plt.show()

我们将数据Normalization到0,1之间,并画出45度线:

cumulative_actual_shares = cumulative_actual / sum(actual)
cumulative_index_shares = cumulative_index / len(predictions) #Add (0, 0) to the plot
x_values = [0] + list(cumulative_index_shares)
y_values = [0] + list(cumulative_actual_shares) #Display the 45° line stacked on top of the y values
diagonal = [x - y for (x, y) in zip(x_values, y_values)] plt.stackplot(x_values, y_values, diagonal)
plt.xlabel('Cumulative Share of Predictions')
plt.ylabel('Cumulative Share of Actual Values')
plt.show()

计算橙色区域面积:

fy = scipy.interpolate.interp1d(x_values, y_values)
blue_area, _ = scipy.integrate.quad(fy, 0, 1, points=x_values)
orange_area = 0.5 - blue_area
print('Orange Area: %.3f' % orange_area)

最大可能的基尼系数:

前面我们是按照预测值对真实值排序,得到一个基尼系数;现在我们按照真实值给真实值排序,得到最大可能的基尼系数:

cumulative_actual_shares_perfect = np.cumsum(sorted(actual)) / sum(actual)
y_values_perfect = [0] + list(cumulative_actual_shares_perfect) #Display the 45° line stacked on top of the y values
diagonal = [x - y for (x, y) in zip(x_values, y_values_perfect)] plt.stackplot(x_values, y_values_perfect, diagonal)
plt.xlabel('Cumulative Share of Predictions')
plt.ylabel('Cumulative Share of Actual Values')
plt.show() # Integrate the the curve function
fy = scipy.interpolate.interp1d(x_values, y_values_perfect)
blue_area, _ = scipy.integrate.quad(fy, 0, 1, points=x_values)
orange_area = 0.5 - blue_area
print('Orange Area: %.3f' % orange_area)

数据挖掘中的Scoring Metric的实现:

def gini(actual, pred):
assert (len(actual) == len(pred))
all = np.asarray(np.c_[actual, pred, np.arange(len(actual))], dtype=np.float)
all = all[np.lexsort((all[:, 2], -1 * all[:, 1]))]
totalLosses = all[:, 0].sum()
giniSum = all[:, 0].cumsum().sum() / totalLosses giniSum -= (len(actual) + 1) / 2.
return giniSum / len(actual) def gini_normalized(actual, pred):
return gini(actual, pred) / gini(actual, actual) gini_predictions = gini(actual, predictions)
gini_max = gini(actual, actual)
ngini= gini_normalized(actual, predictions)
print('Gini: %.3f, Max. Gini: %.3f, Normalized Gini: %.3f' % (gini_predictions, gini_max, ngini))

Gini系数的原理的更多相关文章

  1. Gini 系数与熵的关系

    首先来看二者的基本定义: ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪H(X)=−∑k=1KpklnpkGini(X)=∑k=1Kpk(1−pk) 将 f(x)=−lnx 在 x=1 处进行一阶泰勒展开(忽略高阶无穷小 ...

  2. CART(分类回归树)原理和实现

    前面我们了解了决策树和adaboost的决策树墩的原理和实现,在adaboost我们看到,用简单的决策树墩的效果也很不错,但是对于更多特征的样本来说,可能需要很多数量的决策树墩 或许我们可以考虑使用更 ...

  3. sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)

     sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  4. 3.决策树ID3算法原理

    1.决策树的作用 主要用于解决分类问题的一种算法 2.建立决策树的3中常用算法 1).ID3--->信息增益 2).c4.5--> 信息增益率 4).CART Gini系数 3.提出问题: ...

  5. cart中回归树的原理和实现

    前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评 ...

  6. 拆系数FFT及其部分优化

    模拟考某题一开始由于校内OJ太慢直接拆系数FFT跑不过 后来被神仙婊了一顿之后发现复杂度写炸了改了改随便过 模版题:任意模数NTT 三模数NTT 常数巨大,跑的极慢 拆系数FFT 原理是对于两个多项式 ...

  7. 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  8. 大白话5分钟带你走进人工智能-第31节集成学习之最通俗理解GBDT原理和过程

    目录 1.前述 2.向量空间的梯度下降: 3.函数空间的梯度下降: 4.梯度下降的流程: 5.在向量空间的梯度下降和在函数空间的梯度下降有什么区别呢? 6.我们看下GBDT的流程图解: 7.我们看一个 ...

  9. 用cart(分类回归树)作为弱分类器实现adaboost

    在之前的决策树到集成学习里我们说了决策树和集成学习的基本概念(用了adaboost昨晚集成学习的例子),其后我们分别学习了决策树分类原理和adaboost原理和实现, 上两篇我们学习了cart(决策分 ...

随机推荐

  1. MySQL--派生表临时结果集中的AutoKey

    在某些场景中,需要对派生表生成临时结果集进行materialized,如果该临时结果集中包含索引键,那么查询有可能通过该索引键来进行优化. 如对下面查询: SELECT T2.purpose_code ...

  2. sqler sql 转rest api 源码解析(二) resp 协议

    resp 协议主要是方便使用redis 客户端进行连接,resp 主要是依赖 tidwall/redcon golang redis 协议包 resp 服务说明 server_resp.go 文件,干 ...

  3. 新鲜出炉一份Java面试清单,共200+道题

    一.Java 基础 1.JDK 和 JRE 有什么区别? 答:JRE是java运行时环境,包含了java虚拟机,java基础类库.是使用java语言编写的程序运行所需要的软件环境,是提供给想运行jav ...

  4. HappytimeOnvif Client V8.3的使用

    1.system-->system settings-->勾选RTP RTSP 2.start video poll

  5. FastAdmin 数据库备份插件更新到 v1.0.4

    FastAdmin 数据库备份插件更新到 v1.0.4 下载地址: https://www.fastadmin.net/store/database.html 更新如下: 修复了忽略列表无效的 Bug ...

  6. js将网址转为二维码并下载图片

    将一个网址转为二维码, 下面可以添加文字, 还提供下载功能 利用的是 GitHub上面的qrcode.js 和canvas <!DOCTYPE html> <html> < ...

  7. TypeScript 之 类型推导

    https://m.runoob.com/manual/gitbook/TypeScript/_book/doc/handbook/Type%20Inference.html 类型推导:发生在初始化变 ...

  8. Ansible Ad-Hoc命令(三)

    一.Ad-Hoc 介绍 1.了解下什么是Ad-Hoc ? Ad-Hoc 其实就是基于Ansible 运行的命令集,有些类似终端中敲入的shell命令,Ansible提供了两种运行完成任务的方式,一种是 ...

  9. 【python】多线程详解

    一.进程与线程关系 一个进程至少包含一个线程. 二.线程基础 1.线程的状态 线程有5种状态,状态转换的过程如下图所示: 2.线程同步(锁) 多线程的优势在于可以同时运行多个任务(至少感觉起来是这样) ...

  10. verilog编码规范

    verilog编码规范 1.Register with Rising-Edge Coding Example (Verilog) Flip-Flops and Registers Control Si ...