题意

题目链接

单点修改,区间mod,区间和

Sol

如果x > mod ,那么 x % mod < x / 2

证明:

即得易见平凡,

仿照上例显然,

留作习题答案略,

读者自证不难。

反之亦然同理,

推论自然成立,

略去过程Q.E.D.,

由上可知证毕。

然后维护个最大值就做完了。。

复杂度不知道是一个log还是两个log,大概是两个吧(线段树一个+最多改log次。)

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, a[MAXN];
#define ls k << 1
#define rs k << 1 | 1
LL sum[MAXN];
int mx[MAXN];
void update(int k) {
sum[k] = sum[ls] + sum[rs];
mx[k] = max(mx[ls], mx[rs]);
}
void Build(int k, int ll, int rr) {
if(ll == rr) {sum[k] = mx[k] = read(); return ;}
int mid = ll + rr >> 1;
Build(ls, ll, mid); Build(rs, mid + 1, rr);
update(k);
}
LL Query(int k, int l, int r, int ql, int qr) {
if(ql <= l && r <= qr) return sum[k];
int mid = l + r >> 1;
if(ql > mid) return Query(rs, mid + 1, r, ql, qr);
else if(qr <= mid) return Query(ls, l, mid, ql, qr);
else return Query(ls, l, mid, ql, qr) + Query(rs, mid + 1, r, ql, qr);
}
void Modify(int k, int l, int r, int p, int v) {
if(l == r) {sum[k] = mx[k] = v; return ;}
int mid = l + r >> 1;
if(p <= mid) Modify(ls, l, mid, p, v);
else Modify(rs, mid + 1, r, p, v);
update(k);
}
void Mod(int k, int l, int r, int ql, int qr, int x) {
if(mx[k] < x) return ;
if(l == r) {sum[k] = mx[k] % x; mx[k] %= x; return ;}
int mid = l + r >> 1;
if(ql <= mid) Mod(ls, l, mid, ql, qr, x);
if(qr > mid) Mod(rs, mid + 1, r, ql, qr, x);
update(k);
}
signed main() {
N = read(); M = read();
Build(1, 1, N);
while(M--) {
int opt = read();
if(opt == 1) {
int l = read(), r = read();
cout << Query(1, 1, N, l, r) << '\n';
} else if(opt == 2) {
int l = read(), r = read(), x = read();
Mod(1, 1, N, l, r, x);
} else {
int k = read(), x = read();
Modify(1, 1, N, k, x);
}
}
return 0;
}
/* */

cf250D. The Child and Sequence(线段树 均摊复杂度)的更多相关文章

  1. HDU - 5306 Gorgeous Sequence 线段树 + 均摊分析

    Code: #include<algorithm> #include<cstdio> #include<cstring> #define ll long long ...

  2. 【loj6029】「雅礼集训 2017 Day1」市场 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有四种:区间加.区间下取整除.区间求最小值.区间求和. $n\le 100000$ ,每次加的数在 $[-10^4,10^4]$ 之 ...

  3. 【uoj#228】基础数据结构练习题 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...

  4. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸

    D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...

  5. Codeforces 438D The Child and Sequence - 线段树

    At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...

  6. Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模

    D. The Child and Sequence   At the children's day, the child came to Picks's house, and messed his h ...

  7. CF(438D) The Child and Sequence(线段树)

    题意:对数列有三种操作: Print operation l, r. Picks should write down the value of . Modulo operation l, r, x. ...

  8. CodeForces 438D The Child and Sequence (线段树 暴力)

    传送门 题目大意: 给你一个序列,要求在序列上维护三个操作: 1)区间求和 2)区间取模 3)单点修改 这里的操作二很讨厌,取模必须模到叶子节点上,否则跑出来肯定是错的.没有操作二就是线段树水题了. ...

  9. bzoj4127 Abs 树链剖分+线段树+均摊分析

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4127 题解 首先区间绝对值和可以转化为 \(2\) 倍的区间正数和 \(-\) 区间和.于是问 ...

随机推荐

  1. Linq to xml修改CDATA节点值

    增加节点时,我们是这样写的: xop.Document.Element("messages").Add( new XElement("message", new ...

  2. drf-序列化器的理解

    序列化器作用:  1.进行数据的校验 2.对数据对象进行转换 序列化:  模型类对象  ----->  python字典    用于输出, 返回给前端使用 反序列化:  前端传送的数据  --- ...

  3. mongodb 初学 意外 连接服务器异常(Connection refused)

    啦啦啦 这种情况 root@localhost:/# mongo MongoDB shell version: connecting to: test --31T07:: W NETWORK [thr ...

  4. django-suit报错解决-----from suit.apps import DjangoSuitConfig

    (py27) [root@test SimpletourDevops]# python manage.py makemigrationsTraceback (most recent call last ...

  5. socket练习:FTP

    FTP 练习收获: 1,类型转换 2,进度条实现: 3,print 输出不换行的方法: print输出 不换行的方法: 方法一: import sys   sys.stdout.write(" ...

  6. TensorFlow.js之根据数据拟合曲线

    这篇文章中,我们将使用TensorFlow.js来根据数据拟合曲线.即使用多项式产生数据然后再改变其中某些数据(点),然后我们会训练模型来找到用于产生这些数据的多项式的系数.简单的说,就是给一些在二维 ...

  7. 读书笔记(05) - 事件 - JavaScript高级程序设计

    HTML依托于JavaScript来实现用户与WEB网页之间的动态交互,接收用户操作并做出相应的反馈,而事件在此间则充当桥梁的重要角色. 日常开发中,经常会为某个元素绑定一个事件,编写相应的业务逻辑, ...

  8. 第三方登录:微信扫码登录(OAuth2.0)

    1.OAuth2.0 OAuth(开放授权)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资源(如照片,视频,联系人列表),而无需将用户名和密码提供给第三方应用. 允许用户提供 ...

  9. GCC 多文件编辑

    #include <stdio.h> int plus(int a, int b); int minus(int a, int b); int multiply(int a, int b) ...

  10. 白话js this指向问题

    前言   通过本文,你大概能了解this基础指向的问题,抛开例子去说this太虚幻,这里还是结合几篇博文做个整理,算是个人的记录了. 先说概念,this指向与申明无关,永远指向距离自己最近的最终调用者 ...