由于有相同权值的边不超过10条的限制,所以可以暴搜

先做一遍kruskal,记录下来每个权值的边使用的数量(可以离散化一下)

可以证明,对于每个权值,所有的最小生成树中选择的数量是一样的、而且它们连成的连通块也是一样的

所以我们把每个权值的边分开暴搜所有可能的情况,最后再乘到一起就是答案

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=,maxm=,P=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int a,b;
ll l;
}eg[maxm];
int egh[maxn],ect;
int N,M,L,cnt[maxm];
int fa[maxn],ans,sum; inline bool cmp(Edge a,Edge b){return a.l<b.l;}
inline int getf(int x){
while(x!=fa[x]) x=fa[x];return x;
} void dfs(int x,int y,int n){
if(x>M||eg[x].l!=y){
if(n==cnt[y]) sum=(sum+)%P;
return;
}
int aa=getf(eg[x].a),bb=getf(eg[x].b);
if(aa!=bb){
fa[aa]=bb;
dfs(x+,y,n+);
fa[aa]=aa;
}
dfs(x+,y,n);
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),M=rd();
for(i=;i<=M;i++){
eg[i].a=rd(),eg[i].b=rd();
eg[i].l=rd();
}sort(eg+,eg+M+,cmp);
int lst=-;
for(i=,j=;i<=M;i++){
if(eg[i].l!=lst) j++;
lst=eg[i].l,eg[i].l=j;
}
for(i=;i<=N;i++) fa[i]=i;
for(i=,j=;i<=M;i++){
int x=getf(eg[i].a),y=getf(eg[i].b);
if(x!=y){
fa[x]=y;
j++;cnt[eg[i].l]++;
}
}
if(j<N-){printf("0\n");return ;}
for(i=;i<=N;i++) fa[i]=i;
int ans=;
for(i=,j=;i<=M;i++){
if(eg[i].l!=eg[i-].l){
sum=;dfs(i,eg[i].l,);
ans=(ans*sum)%P;
}
int x=getf(eg[i].a),y=getf(eg[i].b);
if(x!=y){
fa[x]=y;j++;
}
}
printf("%d\n",ans);
return ;
}

bzoj1016/luogu4208 最小生成树计数 (kruskal+暴搜)的更多相关文章

  1. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  2. [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  3. [BZOJ1016] [JSOI2008] 最小生成树计数 (Kruskal)

    Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...

  4. bzoj1016 [JSOI2008]最小生成树计数——Kruskal+矩阵树定理

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 从 Kruskal 算法的过程来考虑产生多种方案的原因,就是边权相同的边有一样的功能, ...

  5. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    一直以为这题要martix-tree,实际上因为有相同权值的边不大于10条于是dfs就好了... 先用kruskal求出每种权值的边要选的次数num,然后对于每种权值的边2^num暴搜一下选择的情况算 ...

  6. BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )

    不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ----------------------- ...

  7. bzoj1016 [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3517  Solved: 1396[Submit][St ...

  8. 【kruscal】【最小生成树】【搜索】bzoj1016 [JSOI2008]最小生成树计数

    不用Matrix-tree定理什么的,一边kruscal一边 对权值相同的边 暴搜即可.将所有方案乘起来. #include<cstdio> #include<algorithm&g ...

  9. [BZOJ1016][JSOI2008]最小生成树计数(结论题)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1016 分析: 首先有个性质:如果边集E.E'都可以表示一个图G的最小生成树(当然E和E ...

随机推荐

  1. Linux CentOS7系统中phpMyAdmin安装配置

    今天介绍的是如何在Linux CentOS7系统中配置phpMyAdmin. 目录 环境准备 安装包 基本设置 网站预览 环境准备 linux centos7系统 ssh软件 php语言环境 mysq ...

  2. 20155229《网络对抗技术》Exp9:Web安全基础

    实验内容 Webgoat实践下相关实验. 实验步骤 WebGoat: Webgoat是OWASP组织研究出的一个专门进行web漏洞实验的应用品台,这个平台里包含了web中常见的各种漏洞,例如:跨站脚本 ...

  3. 20155233 《网络对抗》Exp2 后门原理与实践

    实验过程 1.Win获得Linux Shell windows:使用ipconfig指令查看本机ip: windows:使用ncat命令打开监听: Linux反弹连接win: 输入 nc window ...

  4. linux 升级 5.0.2内核

    1.下载 wet https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.0.2.tar.xz -o /usr/src/ cd /usr/src ta ...

  5. JavaScript快速入门-ECMAScript本地对象(Date)

    JavaScript中的Date 对象用于处理日期和时间. var myDate=new Date()  #Date 对象会自动把当前日期和时间保存为其初始值. 一.Date对象的方法 方法 示例 n ...

  6. LHS 和 RHS----你所不知道的JavaScript系列(1)

      变量的赋值操作会执行两个动作, 首先编译器会在当前作用域中声明一个变量(如果之前没有声明过), 然后在运行时引擎会在作用域中查找该变量, 如果能够找到就会对它赋值.----<你所不知道的Ja ...

  7. Linux/centos 7 使用动态ip(dhcp)切换成静态ip后无法联网的问题

    确保:子网掩码,网关,dns一致,最后修改: /etc/sysconfig/network-scripts/ifcfg-ens33 查看网关和子网掩码: route -n 查看dns

  8. GTX1060 深度学习工具链

    通过试错,推荐GTX1060 WIN10的工具链记录如下: GPU: GTX 1060 6G OS: WIN10 CUDA:9.0 CuDNN:7.1.3 Tensorflow: Tensorflow ...

  9. 全局最小割StoerWagner算法详解

    前言 StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础. 本文大部分内容与词汇来自参考文献(英文,需***),用兴趣的可以去读一下文献. 概念 无向图的割:有无 ...

  10. HDU Ignatius's puzzle

    链接 [http://acm.hdu.edu.cn/showproblem.php?pid=1098] 分析: 数学归纳法 f(1) = 18 + ka; 假设f(x) = 5x^13+13x^5+k ...