- > 动规讲解基础讲解七——最长单增子序列
(LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的。
例如给定序列{1,6,3,5,4},答案是3,因为{1,3,4}和{1,3,5}就是长度最长的两个单增子序列。
处看此题,怎么做? 万能的枚举?枚举全部2^n个子序列,找出最长的,固然可以,就是复杂度太高。我们为什么要枚举呢?因为要知道取了哪些数,其实我们只需要考虑上一个数和取了几个数就可以了吧?因为单增的意思是比前一个数大,我们要加入这个数的时候,只考虑它比之前加入的最后一个数大就可以了。而最长的意思是数的个数最多,我们只要知道数的总个数就可以了,没必要知道具体有哪些数。
让我们尝试一下用动态规划的思考办法。首先设置数列是a1, a2, a3…an,为了方便我们加入一项a0=-∞,后面我们将发现这会给我们带来极大的方便。int f[i]表示以第i个数结尾的最长单调子序列的长度, 那么我们看一下加入ai之前的最后一个数是aj,显然j < i并且aj < ai,我们有f(i) = f(j) + 1,因为往后面延长了一项嘛。那根据这个式子,我们显然应该选择最大的f(j),才能让f(i)最大。
于是我们有了递推关系f(i) = max{f(j)| j < i并且aj < ai} + 1,光有了递推关系还不够,初值呢? f(0) = 0,并且我们加入了a0=-∞,这样对每个i > 0,j总是存在的,大不了就达到下标0了嘛。
f[] = ;
for i = to n do
f[i] = ;
for j = to i – do
f[i] = max(f[i], f[j] + )
endfor
endfor
#include<cstdio>
#include<cstring>
using namespace std;
int n,a[],f[],maxn;
int main()
{
memset(f,-,sizeof(f));
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++)
{
if(a[i]>f[maxn]) f[++maxn]=a[i];
else if(a[i]<f[maxn])
{
int l=,r=maxn;
while(l<=r)
{
int m=(l+r)/;
if(a[i]<f[m]) r=m-;
else if(a[i]==f[m]) break;
else l=m+;
}
if(f[l]>a[i]) f[l]=a[i];
}
}
printf("%d",maxn);
}
如果对你有所帮助,别忘了加好评哦;么么哒!!下次见!88
- > 动规讲解基础讲解七——最长单增子序列的更多相关文章
- 51nod 最长单增子序列(动态规划)
最长单增子序列 (LIS Longest Increasing Subsequence)给定一个数列,从中删掉任意若干项剩余的序列叫做它的一个子序列,求它的最长的子序列,满足子序列中的元素是单调递增的 ...
- - > 动规讲解基础讲解五——最长公共子序列问题
一些概念: (1)子序列: 一个序列A = a1,a2,……an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列. 例如: 对序列 1,3,5 ...
- - > 动规讲解基础讲解一——01背包(模板)
作为动态规划的基础,01背包的思想在许多动规问题中会经常出现,so,熟练的掌握01背包的思路是极其重要的: 有n件物品,第i件物品(I = 1,2,3…n)的价值是vi, 重量是wi,我们有一个能承重 ...
- - > 动规讲解基础讲解六——编辑距离问题
给定两个字符串S和T,对于T我们允许三种操作: (1) 在任意位置添加任意字符(2) 删除存在的任意字符(3) 修改任意字符 问最少操作多少次可以把字符串T变成S? 例如: S= “ABCF” ...
- - > 动规讲解基础讲解八——正整数分组
将一堆正整数分为2组,要求2组的和相差最小.例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. 整数个数n<=100,所有整数的和<=1 ...
- - > 动规讲解基础讲解四——最大子段和问题
给出一个整数数组a(正负数都有),如何找出一个连续子数组(可以一个都不取,那么结果为0),使得其中的和最大? 例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13.和为20. ...
- - > 动规讲解基础讲解四——矩阵取数
给定一个m行n列的矩阵,矩阵每个元素是一个正整数,你现在在左上角(第一行第一列),你需要走到右下角(第m行,第n列),每次只能朝右或者下走到相邻的位置,不能走出矩阵.走过的数的总和作为你的得分,求最大 ...
- - > 动规讲解基础讲解三——混合背包(背包模板)
将01背包,完全背包,和多重完全背包问题结合起来,那么就是混合三种背的问题 根据三种背包的思想,那么可以得到混合三种背包的问题可以这样子求解 for(int i=1; i<=N; ++i) if ...
- 最长公共子序列lcs 51nod1006
推荐参考博客:动态规划基础篇之最长公共子序列问题 - CSDN博客 https://blog.csdn.net/lz161530245/article/details/76943991 个人觉得上面 ...
随机推荐
- [LOJ#10064]黑暗城堡
Description 在顺利攻破 Lord lsp 的防线之后,lqr 一行人来到了 Lord lsp 的城堡下方.Lord lsp 黑化之后虽然拥有了强大的超能力,能够用意念力制造建筑物,但是智商 ...
- [NOIP2004]火星人
Description 人类终于登上了火星的土地并且见到了神秘的火星人.人类和火星人都无法理解对方的语言,但是我们的科学家发明了一种用数字交流的方法.这种交流方法是这样的,首先,火星人把一个非常大的数 ...
- rman 问题
1. RMAN Repeatedly Fail To Backup Archivelogs with RMAN-20242 Cause: There is a mis-match between th ...
- Myeclipse2014安装&破解激活
市场上很多JavaWeb的IDE比如Idea(听说用好开发效率会很高),eclipse(插件丰富还免费),但是对于初学者还是为了提高学习的效率(Myeclipse创建web项目的时候可以自动生成一些配 ...
- 【译】x86程序员手册25-7.1任务状态段
7.1 Task State Segment 任务状态段 All the information the processor needs in order to manage a task is st ...
- ERwin逻辑模型
1.自动排序 Format>>Preferences>>Layout Entire Diagram CA ERwin
- jQuery 遍历 - children() 方法
jQuery 遍历参考手册 实例 找到类名为 "selected" 的所有 div 的子元素,并将其设置为蓝色: $("div").children(" ...
- [JSOI2012]玄武密码 题解(AC自动机)
显然是AC自动机对吧 插入单词之后把文章在自动机上跑一遍,到达过的节点打上花火标记 之后检查一下每个单词有几个标记即可 可以把题目中的4个字母映射成abcd方便遍历 一定要记得把文章也映射啊! #in ...
- Windows下编译64位GSL
GSL (GNU Scientific Library, http://www.gnu.org/software/gsl/)官方并没有提供编译好的Windows版本.首先要保证Windows是64位的 ...
- 更新dell机器的idrac的固件版本后重启机器系统失败
事情是这样的.dell ra620机器,idrac7打不开java,所以在机器生产中直接更新了固件,客户直接在系统内reboot后就连不上.打开本地是卡在下图. 强制重启后发现服务器提示,是IDRAC ...