题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006

(luogu)https://www.luogu.org/problemnew/show/P3264

题解: 终于写出来斯坦纳树了。。

我一直不明白的地方是: spfa那种转移为什么是直接加边权?为什么没有一些特殊情况(如从根转移到儿子)不是加边权?后来觉得大概是因为那种特殊情况如果出现,则一定会在枚举子集的转移中被转移到。

做法就是,先对每个特殊点的子集求出来最小斯坦纳树,然后设\(dp[S]\)表示颜色集合\(S\)内的最小答案,那么\(dp[S]\)可以直接等于它所对应的关键点集合的斯坦纳树,也可以由好几个子集合并过来,枚举子集转移即可。

时间复杂度\(O(ShortestPath(n,m)\times 2^p+n3^p)\)

这里貌似SPFA比Dijkstra略快一些。(我在洛谷上开O2,spfa 3234ms, Dijkstra 6695ms, 不开O2 spfa T成65, Dijkstra T成40)

代码

SPFA

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std; const int N = 1e3;
const int M = 3e3;
const int NN = 10;
const int INF = 707406378;
struct Edge
{
int v,w,nxt;
} e[(M<<1)+3];
int fe[N+3];
int ky[NN+3];
int clrset[(1<<NN)+3];
int clr[NN+3];
int dp[N+3][(1<<NN)+3];
int ans[(1<<NN)+3];
bool inq[M+3];
int que[M+3];
int n,m,nn,en; void addedge(int u,int v,int w)
{
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en;
} void update(int &x,int y) {x = x<y?x:y;} void SPFA(int sta)
{
int head = 1,tail = 1;
for(int i=1; i<=n; i++)
{
if(dp[i][sta]<INF)
{
que[tail] = i; tail++; if(tail>n+1) tail = 1;
inq[i] = true;
}
}
while(head!=tail)
{
int u = que[head]; head++; if(head>n+1) head = 1;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(dp[u][sta]+e[i].w<dp[v][sta])
{
dp[v][sta] = dp[u][sta]+e[i].w;
if(!inq[v])
{
que[tail] = v; tail++; if(tail>n+1) tail = 1;
inq[v] = true;
}
}
}
inq[u] = false;
}
} int main()
{
scanf("%d%d%d",&n,&m,&nn);
for(int i=1; i<=m; i++)
{
int x,y,z; scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z); addedge(y,x,z);
}
for(int i=0; i<nn; i++)
{
scanf("%d%d",&clr[i],&ky[i]); clr[i]--;
clrset[1<<clr[i]] |= (1<<i);
}
memset(dp,42,sizeof(dp));
for(int i=0; i<nn; i++) dp[ky[i]][(1<<i)] = 0;
for(int i=1; i<(1<<nn); i++)
{
for(int j=(i-1)&i; j; j=(j-1)&i)
{
for(int k=1; k<=n; k++)
{
dp[k][i] = min(dp[k][i],dp[k][i^j]+dp[k][j]);
}
}
SPFA(i);
}
for(int i=1; i<(1<<nn); i<<=1)
{
for(int j=0; j<(1<<nn); j++)
{
if(j&i)
{
clrset[j] |= clrset[i];
}
}
}
for(int i=1; i<(1<<nn); i++)
{
ans[i] = INF;
for(int j=1; j<=n; j++)
{
update(ans[i],dp[j][clrset[i]]);
}
for(int j=(i-1)&i; j; j=(j-1)&i)
{
update(ans[i],ans[j]+ans[i^j]);
}
}
printf("%d\n",ans[(1<<nn)-1]);
return 0;
}

Dijkstra

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std; const int N = 1e3;
const int M = 3e3;
const int NN = 10;
const int INF = 707406378;
struct Edge
{
int v,w,nxt;
} e[(M<<1)+3];
struct DijNode
{
int u,dis;
DijNode() {}
DijNode(int _u,int _dis) {u = _u,dis = _dis;}
bool operator <(const DijNode &arg) const {return dis>arg.dis;}
};
int fe[N+3];
bool vis[N+3];
int ky[NN+3];
int clrset[(1<<NN)+3];
int clr[NN+3];
int dp[N+3][(1<<NN)+3];
int ans[(1<<NN)+3];
priority_queue<DijNode> que;
int n,m,nn,en; void addedge(int u,int v,int w)
{
en++; e[en].v = v; e[en].w = w;
e[en].nxt = fe[u]; fe[u] = en;
} void update(int &x,int y) {x = min(x,y);} void Dijkstra(int sta)
{
while(!que.empty())
{
DijNode tmp = que.top(); que.pop(); int u = tmp.u;
if(tmp.dis!=dp[u][sta]) continue;
vis[u] = true;
for(int i=fe[u]; i; i=e[i].nxt)
{
int v = e[i].v;
if(vis[v]==false && dp[u][sta]+e[i].w<dp[v][sta])
{
dp[v][sta] = dp[u][sta]+e[i].w;
que.push(DijNode(v,dp[v][sta]));
}
}
}
for(int i=1; i<=n; i++) vis[i] = false;
} int main()
{
scanf("%d%d%d",&n,&m,&nn);
for(int i=1; i<=m; i++)
{
int x,y,z; scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z); addedge(y,x,z);
}
for(int i=0; i<nn; i++)
{
scanf("%d%d",&clr[i],&ky[i]); clr[i]--;
clrset[1<<clr[i]] |= (1<<i);
}
memset(dp,42,sizeof(dp));
for(int i=0; i<nn; i++) dp[ky[i]][(1<<i)] = 0;
for(int i=1; i<(1<<nn); i++)
{
for(int j=(i-1)&i; j; j=(j-1)&i)
{
for(int k=1; k<=n; k++)
{
dp[k][i] = min(dp[k][i],dp[k][i^j]+dp[k][j]);
}
}
for(int j=1; j<=n; j++)
{
if(dp[j][i]!=INF)
{
que.push(DijNode(j,dp[j][i]));
}
}
Dijkstra(i);
}
for(int i=1; i<(1<<nn); i<<=1)
{
for(int j=0; j<(1<<nn); j++)
{
if(j&i)
{
clrset[j] |= clrset[i];
}
}
}
for(int i=1; i<(1<<nn); i++)
{
ans[i] = INF;
for(int j=1; j<=n; j++)
{
update(ans[i],dp[j][clrset[i]]);
}
for(int j=(i-1)&i; j; j=(j-1)&i)
{
update(ans[i],ans[j]+ans[i^j]);
}
}
printf("%d\n",ans[(1<<nn)-1]);
return 0;
}

BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)的更多相关文章

  1. 【bzoj4006】[JLOI2015]管道连接 斯坦纳树+状压dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的无向图和 $p$ 个特殊点,每个特殊点有一个颜色.要求选出若干条边,使得颜色相同的特殊点在同一个连通块内.输出最小边权和. 输入 第一行包含三个整数 n ...

  2. BZOJ4006: [JLOI2015]管道连接(斯坦纳树,状压DP)

    Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1171  Solved: 639[Submit][Status][Discuss] Descripti ...

  3. bzoj 4006 管道连接 —— 斯坦纳树+状压DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4006 用斯坦纳树求出所有关键点的各种连通情况的代价,把这个作为状压(压的是集合选择情况)的初 ...

  4. 【BZOJ4774/4006】修路/[JLOI2015]管道连接 斯坦纳树

    [BZOJ4774]修路 Description 村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路.对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i & ...

  5. 洛谷P3264 [JLOI2015]管道连接 (斯坦纳树)

    题目链接 题目大意:有一张无向图,每条边有一定的花费,给出一些点集,让你从中选出一些边,用最小的花费将每个点集内的点相互连通,可以使用点集之外的点(如果需要的话). 算是斯坦纳树的入门题吧. 什么是斯 ...

  6. bzoj 4006 [JLOI2015]管道连接(斯坦纳树+状压DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4006 [题意] 给定n点m边的图,连接边(u,v)需要花费w,问满足使k个点中同颜色的 ...

  7. BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)

    4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...

  8. BZOJ2595: [Wc2008]游览计划(斯坦纳树,状压DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 2030  Solved: 986[Submit][Status][ ...

  9. 绿色计算大赛决赛 第二阶段 消息传递(斯坦纳树 状压dp+spfa)

    传送门 Description 作为公司老板的你手下有N个员工,其中有M个特殊员工.现在,你有一个消息需要传递给你的特殊员工.因为你的公司业务非常紧张,所以你和员工之间以及员工之间传递消息会造成损失. ...

随机推荐

  1. ubuntu 16.04 Eclipse 图标显示为 ?(已解决)

    这个问题挺好解决: sudo gedit /usr/share/applications/eclipse.desktop在这个文件中将Icon=/home/soyo/eclipse/icon.xpm, ...

  2. Spark 分布式环境--连接独立集群管理器

    Spark 分布式环境:master,worker 节点都配置好的情况下 : 却无法通过spark-shell连接到 独立集群管理器 spark-shell --master spark://soyo ...

  3. 【152】C# 操作 Excel 杂记

    前面写了一篇博文是关于 C# 操作 Excel 的文章,但是里面有些中规中矩,搞的我不知道怎么写了,所以另开一帖.. 注意:基本应用如下所示! //首先是引用 using Excel = Micros ...

  4. Unity资源的查找

    Object.Destroy static function Destroy(obj: Object, t: float = 0.0F): void;   Description Removes a ...

  5. bzoj1216 操作系统(优先队列模拟)

    1216: [HNOI2003]操作系统 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1172  Solved: 649[Submit][Statu ...

  6. JS中定时器的返回数值ID值

    定时器会返回一个数字值id,可以由clearInterval(id)或clearTimeout(id)来实现对对应定时器的清除. setInterval()/setTimeout()BOM中的Wind ...

  7. Scala-基础-函数(2)

    import junit.framework.TestCase //函数(2) //知识点-默认参数,带名参数,变长参数,过程 class Demo1 extends TestCase { //测试方 ...

  8. 这样的设计是否有违背MVC设计原则??

    MVC 皆知为 Model-View-Controller 请求模型-〉Client发现请求-〉Controller接收+处理-〉返回Model给前端-〉前端接收处理模型Result 但是最近发现一个 ...

  9. ch1 About thinking skills

    When confronted with a problem , we think about it. The issue, of course, is that our efforts may be ...

  10. React组件的防呆机制(propTypes)

    Prop验证 随着应用不断变大,为了保证组件被正确使用变得越来越重要.为此我们引入propsTypes.React.PropTypes提供很多验证器(valodator)来验证传入的数据的有效性.当向 ...