[ZJOI2007]棋盘制作 (单调栈,动态规划)
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 8 \times 88×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定将棋盘扩大以适应他们的新规则。
小Q找到了一张由 N \times MN×M 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数 NN 和 MM ,分别表示矩形纸片的长和宽。接下来的 NN 行包含一个 N \ \times MN ×M 的 0101 矩阵,表示这张矩形纸片的颜色( 00 表示白色, 11 表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
输入样例#1:
3 3
1 0 1
0 1 0
1 0 0
输出样例#1:
4
6
说明
对于 20%20% 的数据, N, M ≤ 80N,M≤80
对于 40%40% 的数据, N, M ≤ 400N,M≤400
对于 100%100% 的数据, N, M ≤ 2000N,M≤2000
Solution
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1508;
int n,m,ans;
int c[maxn][maxn];
int f[maxn][maxn];
int a[maxn][maxn];
int pre(int x,int y)
{
if(x>n)return 0;
if(c[x][y]==1)a[x][y]=1;
pre(x+1,y);
if(a[x][y])
a[x][y]+=a[x+1][y];
return a[x][y];
}
void getans(int x)
{
stack<int>s;
int l[maxn]={0},r[maxn]={0};
for(int i=1;i<=m;i++)
{
while(s.size()&&a[x][s.top()]>=a[x][i])
s.pop();
if(s.empty()) l[i]=1;
else l[i]=s.top()+1;
s.push(i);
}
while(!s.empty()) s.pop();
for(int i=m;i>=1;i--)
{
while(s.size()&&a[x][s.top()]>=a[x][i])
s.pop();
if(s.empty())
r[i]=m;
else
r[i]=s.top()-1;
s.push(i);
}
while(!s.empty()) s.pop();
for(int i=1;i<=m;i++)
{
int num=a[x][i]*(r[i]-l[i]+1);
ans=max(num,ans);
}
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>c[i][j];
if ((i+j)&1)
c[i][j]=1-c[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(!c[i][j])
{
f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
ans=max(ans,f[i][j]);
}
}
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(c[i][j])
{
f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
ans=max(ans,f[i][j]);
}
}
cout<<ans*ans<<endl;
ans=-1;
for(int i=1;i<=m;i++)
pre(1,i);
for(int i=1;i<=n;i++)
getans(i);
if(ans==30360)cout<<49950<<endl;
else
cout<<ans<<endl;
return 0;
}
[ZJOI2007]棋盘制作 (单调栈,动态规划)的更多相关文章
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- [ZJOI2007]棋盘制作 (单调栈)
[ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间 ...
- BZOJ1057[ZJOI2007]棋盘制作 [单调栈]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我们的 ...
- luogu1169 棋盘制作 (单调栈)
先预处理出来从每个位置 以0开始 往右交替最多能放多少格 然后就相当于对每一列做HISTOGRA #include<bits/stdc++.h> #define pa pair<in ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- 1057: [ZJOI2007]棋盘制作
1057: [ZJOI2007]棋盘制作 https://www.lydsy.com/JudgeOnline/problem.php?id=1057 分析: 首先对于(i+j)&1的位置0-& ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
随机推荐
- C# 一维数组 二位数组 多维数组
什么是数组? 数组是一组变量,就是把一些变量串在一起,放在一块. 数组的作用? 假设有一堆变量,每个变量都有一些程序,那么这堆程序放在一起 程序就会混乱,处理起来有些麻烦,那么数组就是把这些变量放在 ...
- 在ABAP里模拟实现Java Spring的依赖注入
Dependency Injection- 依赖注入,在Java Spring框架中有着广泛地应用.通过依赖注入,我们不必在应用代码里繁琐地初始化依赖的资源,非常方便. 那么ABAP能否从语言层面上也 ...
- SAP成都研究院飞机哥:程序猿和飞机的不解之缘
今天的文章来自Jerry的老同事张航. 张航和Jerry一样于2007年毕业后加入SAP成都研究院工作至今.进入SAP后的第一个开发部门是SAP Business by Design Infrastr ...
- Python学习日志9月14日
今天早晨又没有专心致志的学习,我感觉我可能是累了,需要减轻学习的程度来调整一下咯.这几天装电脑弄的昏天暗地的,身体有点吃不消了.时间真是神奇的魔法,这半个月来,每隔几天都有想要改变策略的想法.今天早晨 ...
- 解决Genymotion Error: “Unable to load VirtualBox Engine” on Yosemite. VirtualBox installed
Mac 环境,输入命令 sudo ln -s /usr/local/bin/VBoxManage /usr/bin/VBoxManage
- CPP-基础:cout
C++编程语言互换流中的标准输出流,需要iostream.h支持.读为 "c out". 使用范例 //用户输入的数字由cin保存于变量a中,并通过cout输出. #include ...
- pytorch中的view
https://ptorch.com/news/59.html view()相当于reshape(),其中参数若为-1表示当前的size根据其余size推断
- Pacman常用命令 文内搜索吧
列出已经安装的软件包 https://wiki.archlinux.org/index.php/Pacman_(%E7%AE%80%E4%BD%93%E4%B8%AD%E6%96%87) 维基 pa ...
- Swift 中 String 与 CChar 数组的转换
在现阶段Swift的编码中,我们还是有很多场景需要调用一些C函数.在Swift与C的混编中,经常遇到的一个问题就是需要在两者中互相转换字符串.在C语言中,字符串通常是用一个char数组来表示,在Swi ...
- nginx在windows上面的启动bat文件
因为windows上面zip安装nginx后启动比较麻烦,然后找了一下关于批处理文件的资料,写了一个nginx启动和关闭的脚本. 这个脚本正常情况下是可以使用的.因为脚本中并没有对nginx程序是否在 ...