uva 11178二维几何(点与直线、点积叉积)
Problem D Morley’s Theorem Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.
Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers . This six integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero, and the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are respectively. Errors less than will be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
题目大意:给一个三角形的三个顶点求1/3角平分线的交点。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
}; typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-; int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return x<?-:;
} bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)== && dcmp(a.y-b.y)==);
} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
double Length(Vector A){return sqrt(Dot(A,A));}//向量长度
//两向量的夹角
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));} double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积 Vector Rotate(Vector A,double rad)//向量旋转
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point read_point()
{
Point A;
scanf("%lf %lf",&A.x,&A.y);
return A;
} Point getpoint(Point A,Point B,Point C)
{
Vector v1,v2;
double a1,a2;
v1=C-B;
v2=B-C;
a1=Angle(A-B,C-B)/;
a2=Angle(A-C,B-C)/;
v1=Rotate(v1,a1);
v2=Rotate(v2,-a2);
return GetLineIntersection(B,v1,C,v2);
} int main()
{
int T;
Point A,B,C,D,E,F;
scanf("%d",&T);
while(T--)
{
A=read_point();
B=read_point();
C=read_point();
D=getpoint(A,B,C);
E=getpoint(B,C,A);
F=getpoint(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return ;
}
uva 11178二维几何(点与直线、点积叉积)的更多相关文章
- UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!
这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- Codeforces#514D(三分,简单二维几何)
#include<bits/stdc++.h>using namespace std;const double eps=1e-8;int n; struct node{ double ...
- Foj 2148 二维几何(点是否在三角形内)
题目大意:给n个坐标(不存在三点共线的点),求能够组成多少个凸四边形. #include<iostream> #include<cstdio> #include<cmat ...
- UVA 11019 二维匹配 AC自动机
这个题目要求在一个大矩阵里面匹配一个小矩阵,是AC自动机的灵活应用 思路是逐行按普通AC自动机匹配,用过counts[i][j]记录一下T字符矩阵以i行j列为开头的与P等大的矩阵区域 有多少行已经匹配 ...
- UVA 10465 Homer Simpson(全然背包: 二维目标条件)
UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...
- UVA 10306 e-Coins(全然背包: 二维限制条件)
UVA 10306 e-Coins(全然背包: 二维限制条件) option=com_onlinejudge&Itemid=8&page=show_problem&proble ...
- UVA 11297 线段树套线段树(二维线段树)
题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要 不同的处理方式,非叶子形成的 ...
- UVA 11019 Matrix Matcher(二维hash + 尺取)题解
题意:在n*m方格中找有几个x*y矩阵. 思路:二维hash,总体思路和一维差不太多,先把每行hash,变成一维的数组,再对这个一维数组hash变成二维hash.之前还在想怎么快速把一个矩阵的hash ...
随机推荐
- 洛谷 P2264 情书
题目背景 一封好的情书需要撰写人全身心的投入.lin_toto同学看上了可爱的卡速米想对她表白,但却不知道自己写的情书是否能感动她,现在他带着情书请你来帮助他. 题目描述 为了帮助lin_toto,我 ...
- 由DAG到背包问题——记忆化搜索和递推两种解法
一.问题描述 物品无限的背包问题:有n种物品,每种均有无穷多个.第 i 种物品的体积为Vi,重量为Wi.选一些物品装到一个容量为 C 的背包中,求使得背包内物品总体积不超过C的前提下重量的最大值.1≤ ...
- iview 验证 trigger: 'blur,change', 同时加两个,省的每次还想input 还是 select
iview 验证 trigger: 'blur,change', 同时加两个,省的每次还想input 还是 select dataRuleValidate: { name: [{ required: ...
- CAD交互绘制云线批注(网页版)
js中实现代码说明: 动态拖放时的绘制事件: function DoDynWorldDrawFun(dX,dY,pWorldDraw,pData) { //自定义实体的GUID标识符 var sGui ...
- 【转】IntelliJ 创建main函数快捷
http://blog.csdn.net/tiantiandjava/article/details/42269173 今天偶然发现了IntelliJ中 创建main函数的快捷键,依次还有for循环, ...
- vue表单验证:vee-validate中文提示
官方文档:https://baianat.github.io/vee-validate/guide/ vee-validate可用于vue项目中进行表单验证,使用方法在官方API上都可以查到: 使用过 ...
- HDU-2544-最短路(floyd)
板子题,实验一下floyd. #include <cstdio> #include <algorithm> #include <cstring> using nam ...
- (12)zabbix agent 类型所有key
zabbix服务器端通过与zabbix agent通信来获取客户端服务器的数据,agent分为两个版本,其中一个是主动一个是被动,在配置主机我们可以看到一个是agent,另一个是agent(activ ...
- 如何用纯 CSS 创作一支诱人的冰棍
效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/vrxzMw 可交互视频教 ...
- 《嵌入式linux应用程序开发标准教程》笔记——8.进程间通信
, 8.1 概述 linux里使用较多的进程间通信方式: 管道,pipe和fifo,管道pipe没有实体文件,只能用于具有亲缘关系的进程间通信:有名管道 named pipe,也叫fifo,还允许无亲 ...