Problem D Morley’s Theorem Input: Standard Input

Output: Standard Output

Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian coordinates of D, E and F given the coordinates of A, B, and C.

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain six integers . This six integers actually indicates that the Cartesian coordinates of point A, B and C are  respectively. You can assume that the area of triangle ABC is not equal to zero,  and the points A, B and C are in counter clockwise order.

Output

For each line of input you should produce one line of output. This line contains six floating point numbers  separated by a single space. These six floating-point actually means that the Cartesian coordinates of D, E and F are  respectively. Errors less than   will be accepted.

Sample Input   Output for Sample Input

2
1 1 2 2 1 2
0 0 100 0 50 50

1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

 

题目大意:给一个三角形的三个顶点求1/3角平分线的交点。

#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std; struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
}; typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
const double eps=1e-; int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return x<?-:;
} bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)== && dcmp(a.y-b.y)==);
} double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
double Length(Vector A){return sqrt(Dot(A,A));}//向量长度
//两向量的夹角
double Angle(Vector A,Vector B){return acos(Dot(A,B)/Length(A)/Length(B));} double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积 Vector Rotate(Vector A,double rad)//向量旋转
{
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
} Point GetLineIntersection(Point P,Vector v,Point Q,Vector w)//两直线的交点
{
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point read_point()
{
Point A;
scanf("%lf %lf",&A.x,&A.y);
return A;
} Point getpoint(Point A,Point B,Point C)
{
Vector v1,v2;
double a1,a2;
v1=C-B;
v2=B-C;
a1=Angle(A-B,C-B)/;
a2=Angle(A-C,B-C)/;
v1=Rotate(v1,a1);
v2=Rotate(v2,-a2);
return GetLineIntersection(B,v1,C,v2);
} int main()
{
int T;
Point A,B,C,D,E,F;
scanf("%d",&T);
while(T--)
{
A=read_point();
B=read_point();
C=read_point();
D=getpoint(A,B,C);
E=getpoint(B,C,A);
F=getpoint(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return ;
}

uva 11178二维几何(点与直线、点积叉积)的更多相关文章

  1. UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!

    这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...

  2. UVA 11178 Morley's Theorem(旋转+直线交点)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...

  3. Codeforces#514D(三分,简单二维几何)

    #include<bits/stdc++.h>using namespace std;const double eps=1e-8;int n; struct node{    double ...

  4. Foj 2148 二维几何(点是否在三角形内)

    题目大意:给n个坐标(不存在三点共线的点),求能够组成多少个凸四边形. #include<iostream> #include<cstdio> #include<cmat ...

  5. UVA 11019 二维匹配 AC自动机

    这个题目要求在一个大矩阵里面匹配一个小矩阵,是AC自动机的灵活应用 思路是逐行按普通AC自动机匹配,用过counts[i][j]记录一下T字符矩阵以i行j列为开头的与P等大的矩阵区域 有多少行已经匹配 ...

  6. UVA 10465 Homer Simpson(全然背包: 二维目标条件)

    UVA 10465 Homer Simpson(全然背包: 二维目标条件) http://uva.onlinejudge.org/index.php? option=com_onlinejudge&a ...

  7. UVA 10306 e-Coins(全然背包: 二维限制条件)

    UVA 10306 e-Coins(全然背包: 二维限制条件) option=com_onlinejudge&Itemid=8&page=show_problem&proble ...

  8. UVA 11297 线段树套线段树(二维线段树)

    题目大意: 就是在二维的空间内进行单个的修改,或者进行整块矩形区域的最大最小值查询 二维线段树树,要注意的是第一维上不是叶子形成的第二维线段树和叶子形成的第二维线段树要  不同的处理方式,非叶子形成的 ...

  9. UVA 11019 Matrix Matcher(二维hash + 尺取)题解

    题意:在n*m方格中找有几个x*y矩阵. 思路:二维hash,总体思路和一维差不太多,先把每行hash,变成一维的数组,再对这个一维数组hash变成二维hash.之前还在想怎么快速把一个矩阵的hash ...

随机推荐

  1. The Singapore NRIC Check Digit

    The Singapore NRIC number is made up of 7 digits and a letter behind. This letter is calculated from ...

  2. (一)SpringMVC之警告: No mapping found for HTTP request with URI

    这个警告往往是因为url路径不正确. 所以从三个地方下手: 1.springmvc-config.xml中的配置handle,看看是不是因为handle没有配置导致的. 2.如果是使用注解的方式的话, ...

  3. Lesson1

    #ifdef __cplusplus #include <cstdlib> #else #include <stdlib.h> #endif #include <SDL/ ...

  4. Entity Framework插入数据报错:Validation failed for one or more entities

    www.111cn.net 编辑:lanve 来源:转载 今天在处理Entity Framework插入数据库时,报错: Validation failed for one or more entit ...

  5. 动态规划初步-单向STP

    一.题目 给一个m行n列(m <= 10,n <= 100)的整数矩阵,从第一列任何位置出发每次往右.右下.右上走一格,最终达到最后一列.要求经过的整数之和最小.整个矩阵是环形的,即第一行 ...

  6. Difference between x:Reference and x:Name

    {x:Reference ...} -> returns just a reference of an object it doesn't create that "bridge&qu ...

  7. oracle中group by的高级用法

    简单的group by用法 select c1,sum(c2) from t1 where t1<>'test' group by c1 having sum(c2)>100; ro ...

  8. Bootstrap 响应式表格

    响应式表格 通过把任意的 .table 包在 .table-responsive class 内,您可以让表格水平滚动以适应小型设备(小于 768px).当在大于 768px 宽的大型设备上查看时,您 ...

  9. shell脚本,编写1个弹出式菜单的shell程序并实现其简单的菜单功能。

    [root@localhost wyb]# cat zonghe.sh #!/bin/bash #zonghe usage(){ case $choice in ) read -p "ple ...

  10. 计算机应用 office系列 常用术语英文

    首先,Excel 办公室系列软件——Office series Software 微软——Microsoftware 电子表格 Excel 第一行称为标题栏——title bar 第二行称为菜单栏—— ...