/*
最大密集子图子图裸题
解法:设源点s和汇点t
根据胡波涛的<最小割模型在信息学中的应用>
s-每个点,权值为原边权和m,
每个点-t,权值为m+2*g-degree[i],
原来的边u-v ,权值为原权值
最小割f;
flow=m*n-f;
二分g得到flow 逼近0;
*/
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<queue>
using namespace std;
#define eps 1e-6
#define inf 0x3fffffff
#define N 110
#define NN 1100
struct node {
int u,v,next;
double w;
}bian[NN*8],f[NN];
int yong,head[N],dis[N],work[N];
void init() {
yong=0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,double w) {
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
int degree[N];
void build(int m,double mid,int n) {
int i;
init();
for(i=1;i<=n;i++) {
addedge(0,i,m);
addedge(i,0,0);
addedge(i,n+1,1.0*m+2*mid-degree[i]);
addedge(n+1,i,0);
}
for(i=1;i<=m;i++) {
addedge(f[i].u,f[i].v,1);
addedge(f[i].v,f[i].u,1);
}
return ;
}
int bfs(int S,int T)
{
queue<int>q;
memset(dis,-1,sizeof(dis));
dis[S]=0;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=bian[i].next)
{
int v=bian[i].v;
if(bian[i].w>0&&dis[v]==-1)
{
dis[v]=dis[u]+1;
if(v==T)
return 1;
q.push(v);
}
}
}
return 0;
}
double dfs(int S,double a,int T)
{
if(S==T)return a;
for(int &i=work[S];i!=-1;i=bian[i].next)
{
int v=bian[i].v;
if(bian[i].w>0&&dis[v]==dis[S]+1)
{
double tt=dfs(v,min(a,bian[i].w),T);
if(tt>0)
{
bian[i].w-=tt;
bian[i^1].w+=tt;
return tt;
}
}
}
return 0;
}
double dinic(int S,int T)
{
double ans=0;
while(bfs(S,T))
{
memcpy(work,head,sizeof(head));
while(1) {
double tt=dfs(S,inf,T);//割出来的可能是负值
if(tt<eps)break;
ans+=tt;
}
}
return ans;
}
int vis[N],ans[N],len;
void dfs1(int u) {
int i;
vis[u]=1;
for(i=head[u];i!=-1;i=bian[i].next) {
int v=bian[i].v;
if(!vis[v]&&bian[i].w>0) {
ans[++len]=v;
dfs1(v);
}
}
return ;
}
int cmp(const void *a,const void *b) {
return *(int *)a-*(int *)b;
}
int main() {
int n,m,i,s,t,dd;
double st,en,mid,flow;
while(scanf("%d%d",&n,&m)!=EOF) {
if(!m) {
printf("1\n1\n");
continue;
}
memset(degree,0,sizeof(degree));
for(i=1;i<=m;i++) {
scanf("%d%d",&f[i].u,&f[i].v);
degree[f[i].u]++;
degree[f[i].v]++;
}
s=0;t=n+1;
st=0;en=m;//dd=0;
while(en-st>1.0/n/n) {
mid=(st+en)/2;
// printf("%.2f\n",mid);
// dd++;
// if(dd==12)break;
build(m,mid,n);
flow=dinic(s,t);
// printf("%.2f\n",flow);
flow=1.0*m*n-flow;
if(flow>eps)
st=mid;
else
en=mid;
}
init();
build(m,st,n);
dinic(s,t);
memset(vis,0,sizeof(vis));
len=0;
dfs1(s);
qsort(ans+1,len,sizeof(ans[0]),cmp);
printf("%d\n",len);
for(i=1;i<=len;i++)
printf("%d\n",ans[i]);
}
return 0;}

poj 3155 二分+最小割求实型最小割(最大密集子图)的更多相关文章

  1. zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)

    /* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...

  2. zoj 2676 dinic模板求实型最小割(可做dinic模板)

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<queue> #inc ...

  3. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  4. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  5. 最小割(zjoi2011,bzoj2229)(最小割树)

    小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点\(s,t\)不在同一个部分中,则称 ...

  6. 【bzoj2229】[Zjoi2011]最小割 分治+网络流最小割

    题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...

  7. bzoj 2229 [Zjoi2011]最小割(分治+最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...

  8. 不同的最小割(cqoi2016,bzoj4519)(最小割树)

    学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点\(s,t\)不在同一个部分中,则称这个划分是关于\(s,t\)的割.对于带权图来说,将 所有顶 ...

  9. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

随机推荐

  1. 浅谈 echarts 用法

    对于服务型的公司来说,需要了解用户的使用趋势,来帮助分析市场的走向,所以说统计在一个管理后台中是必不可少的. 会用到echarts插件 ,其官网网址 http://echarts.baidu.com/ ...

  2. iframe及其引出的页面跳转问题

    前提:在前一段的工作中碰到了一些页面跳转,子页面跳到父页面上的等等问题,当时页面总是跳不对,或者跳错,要不就是不需要重新打开窗口,却又重新打开一个了,特此搜寻网上各大博客论坛,加上项目经验整理一篇文章 ...

  3. 【学习笔记】深入理解js原型和闭包(5)——instanceof

    又介绍一个老朋友——instanceof. 对于值类型,你可以通过typeof判断,string/number/boolean都很清楚,但是typeof在判断到引用类型的时候,返回值只有object/ ...

  4. MyBatis使用懒加载mybatis-config.xml配置

    在mybatis-config.xml添加如下配置 <settings> <!--要使延迟加载生效必须配置下面两个属性--> <setting name="la ...

  5. javajsp,Servlet:Property 'Id' not found

    avax.el.PropertyNotFoundException: Property 'Id' not found on type  org.androidpn.server.model.CarSo ...

  6. 如何使用xftp工具在Windows与Linux之间传输文件

    如何使用xftp工具在Windows与Linux之间传输文件 整理者:vashon 声明:感谢开源社区 xftp工具是一款SFTP,FTP文件传输软件,可在Windows pc与Unix/Linux之 ...

  7. 【HEVC简介】High Level Syntax

    参考文献:见<High Efficiency Video Coding (HEVC)>High Level Syntax章节 <HEVC标准介绍.HEVC帧间预测论文笔记>系列 ...

  8. 46 Simple Python Exercises-Higher order functions and list comprehensions

    26. Using the higher order function reduce(), write a function max_in_list() that takes a list of nu ...

  9. vSphere Client用户名密码保存记录

    vSphere Client在访问ESXi主机或vCenter后是默认不保存登录用户名和密码的,不过可以通过修改配置文件来保存,方便访问连接. 方法如下: 打开配置文件路径(实际安装路径):D:\Pr ...

  10. 事件绑定、取消的二种形式 & call

    <script> //call 函数下的一个方法,call方法第一个参数可以改变函数执行过程中的内部this的指向,call方法第二个参数开始就是原来函数的参数列表. function f ...