/*
最大密集子图子图裸题
解法:设源点s和汇点t
根据胡波涛的<最小割模型在信息学中的应用>
s-每个点,权值为原边权和m,
每个点-t,权值为m+2*g-degree[i],
原来的边u-v ,权值为原权值
最小割f;
flow=m*n-f;
二分g得到flow 逼近0;
*/
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#include<queue>
using namespace std;
#define eps 1e-6
#define inf 0x3fffffff
#define N 110
#define NN 1100
struct node {
int u,v,next;
double w;
}bian[NN*8],f[NN];
int yong,head[N],dis[N],work[N];
void init() {
yong=0;
memset(head,-1,sizeof(head));
}
void addedge(int u,int v,double w) {
bian[yong].v=v;
bian[yong].w=w;
bian[yong].next=head[u];
head[u]=yong++;
}
int degree[N];
void build(int m,double mid,int n) {
int i;
init();
for(i=1;i<=n;i++) {
addedge(0,i,m);
addedge(i,0,0);
addedge(i,n+1,1.0*m+2*mid-degree[i]);
addedge(n+1,i,0);
}
for(i=1;i<=m;i++) {
addedge(f[i].u,f[i].v,1);
addedge(f[i].v,f[i].u,1);
}
return ;
}
int bfs(int S,int T)
{
queue<int>q;
memset(dis,-1,sizeof(dis));
dis[S]=0;
q.push(S);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=bian[i].next)
{
int v=bian[i].v;
if(bian[i].w>0&&dis[v]==-1)
{
dis[v]=dis[u]+1;
if(v==T)
return 1;
q.push(v);
}
}
}
return 0;
}
double dfs(int S,double a,int T)
{
if(S==T)return a;
for(int &i=work[S];i!=-1;i=bian[i].next)
{
int v=bian[i].v;
if(bian[i].w>0&&dis[v]==dis[S]+1)
{
double tt=dfs(v,min(a,bian[i].w),T);
if(tt>0)
{
bian[i].w-=tt;
bian[i^1].w+=tt;
return tt;
}
}
}
return 0;
}
double dinic(int S,int T)
{
double ans=0;
while(bfs(S,T))
{
memcpy(work,head,sizeof(head));
while(1) {
double tt=dfs(S,inf,T);//割出来的可能是负值
if(tt<eps)break;
ans+=tt;
}
}
return ans;
}
int vis[N],ans[N],len;
void dfs1(int u) {
int i;
vis[u]=1;
for(i=head[u];i!=-1;i=bian[i].next) {
int v=bian[i].v;
if(!vis[v]&&bian[i].w>0) {
ans[++len]=v;
dfs1(v);
}
}
return ;
}
int cmp(const void *a,const void *b) {
return *(int *)a-*(int *)b;
}
int main() {
int n,m,i,s,t,dd;
double st,en,mid,flow;
while(scanf("%d%d",&n,&m)!=EOF) {
if(!m) {
printf("1\n1\n");
continue;
}
memset(degree,0,sizeof(degree));
for(i=1;i<=m;i++) {
scanf("%d%d",&f[i].u,&f[i].v);
degree[f[i].u]++;
degree[f[i].v]++;
}
s=0;t=n+1;
st=0;en=m;//dd=0;
while(en-st>1.0/n/n) {
mid=(st+en)/2;
// printf("%.2f\n",mid);
// dd++;
// if(dd==12)break;
build(m,mid,n);
flow=dinic(s,t);
// printf("%.2f\n",flow);
flow=1.0*m*n-flow;
if(flow>eps)
st=mid;
else
en=mid;
}
init();
build(m,st,n);
dinic(s,t);
memset(vis,0,sizeof(vis));
len=0;
dfs1(s);
qsort(ans+1,len,sizeof(ans[0]),cmp);
printf("%d\n",len);
for(i=1;i<=len;i++)
printf("%d\n",ans[i]);
}
return 0;}

poj 3155 二分+最小割求实型最小割(最大密集子图)的更多相关文章

  1. zoj 2676 二分+ISAP模板求实型参数的最小割(0-1分数规划问题)(可做ISAP模板)

    /* 参考博文:http://www.cnblogs.com/ylfdrib/archive/2010/09/01/1814478.html 以下题解为转载代码自己写的: zoj2676 胡伯涛论文& ...

  2. zoj 2676 dinic模板求实型最小割(可做dinic模板)

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<queue> #inc ...

  3. POJ 3398 Perfect Service(树型动态规划,最小支配集)

    POJ 3398 Perfect Service(树型动态规划,最小支配集) Description A network is composed of N computers connected by ...

  4. poj 2195 二分图带权匹配+最小费用最大流

    题意:有一个矩阵,某些格有人,某些格有房子,每个人可以上下左右移动,问给每个人进一个房子,所有人需要走的距离之和最小是多少. 貌似以前见过很多这样类似的题,都不会,现在知道是用KM算法做了 KM算法目 ...

  5. 最小割(zjoi2011,bzoj2229)(最小割树)

    小白在图论课上学到了一个新的概念--最小割,下课后小白在笔记本上写下了如下这段话: "对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点\(s,t\)不在同一个部分中,则称 ...

  6. 【bzoj2229】[Zjoi2011]最小割 分治+网络流最小割

    题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...

  7. bzoj 2229 [Zjoi2011]最小割(分治+最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...

  8. 不同的最小割(cqoi2016,bzoj4519)(最小割树)

    学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点\(s,t\)不在同一个部分中,则称这个划分是关于\(s,t\)的割.对于带权图来说,将 所有顶 ...

  9. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

随机推荐

  1. linux给文件或目录添加apache权限

    系统环境:ubuntu11.10/apache2/php5.3.6 在LAMP环境中,测试一个简单的php文件上传功能时,发现/var/log/apache2/error.log中出现如下php警告: ...

  2. RabbitMQ九:远程过程调用RPC

    定义 RPC(Remote Procedure Call Protocol)——远程过程调用协议:它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协议假定某些传输协议 ...

  3. CF779B(round 402 div.2 B) Weird Rounding

    题意: Polycarp is crazy about round numbers. He especially likes the numbers divisible by 10k. In the ...

  4. vue 高度 动态更新计算 calcHeight watch $route

    vue 高度 动态更新计算 calcHeight () { // this.tableHeight = window.innerHeight - 210 } }, mounted () { // co ...

  5. Error:Failed to resolve: com.afollestad:material-dialogs:

    http://www.chenruixuan.com/archives/1068.html 背景: 同事把Android项目直接考给了我...我在Android Studio上运行,然后提示: Err ...

  6. 拖拽功能-jquery

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  7. 01Ping程序的设计

    1.Ping程序设计具体设计任务 1.1 实验目的 PING程序是我们使用的比较多的用于测试网络连通性的程序.PING程序基于ICMP,使用ICMP的回送请求和回送应答来工作.由计算机网络课程知道,I ...

  8. luogu 1968 美元汇率

    https://www.luogu.org/problemnew/show/P1968 定义二维数组f[ ][ ],f[i][1]表示在第i天将马克变为美元,f[i][2]表示在第i天将美元变为马克. ...

  9. luogu P1821 Silver Cow Party

    题目描述 One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the b ...

  10. hdu3404 Switch lights

    题目描述 题解: 首先,由$SG$定理得SG(x,y)=mex(SG(x',y)^SG(x,y')^SG(x',y'))(x'<x,y'<y) 这里的$SG(x,y)$叫$Nim$积. $ ...