\(\\\)

\(Description\)


一棵\(N\)个节点的树,每条边权都为\(1\)。

\(M\)组询问,每次给出三个点\(A_i,B_i,C_i\),求从三个点分别出发,移动到同一个点的路径最小权值和。

  • \(N,M\in [1,5\times10^5]\)

\(\\\)

\(Solution\)


  • 如果是两个点,显然在两点到\(Lca\)的路径上任意位置会合都是花费最小的方案。扩展到三个点,我们猜测最优答案也是产生在两点\(Lca\)或一段路径上。手玩一会样例或者自己造一点数据,可以发现一个事实:三点两两求\(Lca\),必然至少有两个\(Lca\)是同一个点,形象化的表示:

    图中所示的是最一般的情况,可以发现两个相同的\(Lca\)的深度一定不会大于单独的\(Lca\)的深度,因为相同的\(Lca\)产生于,单独的\(Lca\)与不产生这个单独的\(Lca\)的点求\(Lca\)。

  • 此时方案就显然了,图中所有单色的边是一定要被走一次的,如果在图中的\(L2\)处会和,双色的边会被\(b,c\)各走一次,而若在单独的\(Lca\)处会和,双色的边只会走一次,所以我们直接判断出单独的\(Lca\),让第三个点\((a)\)去往那里集合就好,路径长度可以在找\(Lca\)的时候顺便求出。

\(\\\)

\(Code\)


#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 500010
#define R register
#define gc getchar
using namespace std; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,m,t,tot,d[N],hd[N],f[N][20];
struct edge{int to,nxt;}e[N<<1]; inline void add(int u,int v){
e[++tot].to=v; e[tot].nxt=hd[u]; hd[u]=tot;
} queue<int> q;
inline void bfs(){
q.push(1); d[1]=1;
while(!q.empty()){
int u=q.front(); q.pop();
for(R int i=hd[u],v;i;i=e[i].nxt)
if(!d[v=e[i].to]){
d[v]=d[u]+1; f[v][0]=u;
for(R int i=1;i<=t;++i) f[v][i]=f[f[v][i-1]][i-1];
q.push(v);
}
}
} inline pair<int,int> lca(int u,int v){
int res=0;
if(d[u]>d[v]) u^=v^=u^=v;
for(R int i=t;~i;--i) if(d[f[v][i]]>=d[u]) v=f[v][i],res+=(1<<i);
if(u==v) return make_pair(u,res);
for(R int i=t;~i;--i)
if(f[u][i]!=f[v][i]) v=f[v][i],u=f[u][i],res+=(1<<(i+1));
return make_pair(f[u][0],res+2);
} int main(){
t=log2(n=rd())+1; m=rd();
for(R int i=1,u,v;i<n;++i){
u=rd(); v=rd(); add(u,v); add(v,u);
}
bfs();
pair<int,int> l1,l2,l3;
for(R int i=1,a,b,c;i<=m;++i){
a=rd(); b=rd(); c=rd();
l1=lca(a,b); l2=lca(a,c); l3=lca(b,c);
if(l1.first==l2.first) printf("%d %d\n",l3.first,l3.second+lca(l3.first,a).second);
else if(l1.first==l3.first) printf("%d %d\n",l2.first,l2.second+lca(l2.first,b).second);
else if(l2.first==l3.first) printf("%d %d\n",l1.first,l1.second+lca(l1.first,c).second);
}
return 0;
}

[ AHOI 2008 ] Meet的更多相关文章

  1. 「BZOJ 1831」「AHOI 2008」逆序对「贪心」

    题意 给定一个长度为\(n\),值域为\([1,k]\),某些位置不确定的数组,求最小的逆序对.\(n\leq 10^4, k \leq 100\) 题解 这题有人用前缀和优化\(dp\)过了,但是这 ...

  2. [AHOI 2008] 聚会

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1832 [算法] 最近公共祖先 [代码] #include<bits/stdc+ ...

  3. 1558:聚会 ybt

    1558:聚会 ybt 题解(看似很难,其实要是摸清了实质这就是个大水题) 上题目 1558:聚会 时间限制: 1000 ms         内存限制: 524288 KB提交数: 82     通 ...

  4. LOJ1036

    AHOI 2008 聚会 Y 岛风景美丽宜人,气候温和,物产丰富.Y 岛上有 N 个城市,有 N-1 条城市间的道路连接着它们.每一条道路都连接某两个城市.幸运的是,小可可通过这些道路可以走遍 Y 岛 ...

  5. How to disable Passwords must meet complexity requirements[windows 7]

    The Password complexity is a Local Policy setting named "Passwords must meet complexity require ...

  6. SQL Server 2008性能故障排查(三)——I/O

    原文:SQL Server 2008性能故障排查(三)--I/O 接着上一章:CPU瓶颈 I/O瓶颈(I/O Bottlenecks): SQLServer的性能严重依赖I/O子系统.除非你的数据库完 ...

  7. HDU1852 Beijing 2008(快速幂+特殊公式)

    As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...

  8. 在离线环境中发布.NET Core至Windows Server 2008

    在离线环境中发布.NET Core至Windows Server 2008 0x00 写在开始 之前一篇博客中写了在离线环境中使用.NET Core,之后一边学习一边写了一些页面作为测试,现在打算发布 ...

  9. Windows Server 2008 R2常规安全设置及基本安全策略

    这篇文章主要介绍了Windows Web Server 2008 R2服务器简单安全设置,需要的朋友可以参考下 用的腾讯云最早选购的时候悲催的只有Windows Server 2008 R2的系统,原 ...

随机推荐

  1. 【03】AngularJS 简介

    AngularJS 简介 AngularJS 是一个 JavaScript 框架.它可通过 <script> 标签添加到 HTML 页面. AngularJS 通过 指令 扩展了 HTML ...

  2. noip模拟赛 传球接力

    [问题描述]n 个小朋友在玩传球. 小朋友们用 1 到 n 的正整数编号. 每个小朋友有一个固定的传球对象,第 i 个小朋友在接到球后会将球传给第 ai个小朋友, 并且第 i 个小朋友与第 ai个小朋 ...

  3. The Balance POJ 2142 扩展欧几里得

    Description Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of ...

  4. 基于.NET平台常用的框架整理(转)

    基于.NET平台常用的框架整理   分布式缓存框架: Microsoft Velocity:微软自家分布式缓存服务框架. Memcahed:一套分布式的高速缓存系统,目前被许多网站使用以提升网站的访问 ...

  5. html缓存机制,http头部控制

    1.缓存分类:服务器缓存(协商缓存),第三方缓存,浏览器缓存(强制缓存) 2.浏览器缓存(添加 meta),设置请求指定的http头部信息.(状态码200,from cache , from dist ...

  6. Android 自己定义控件实现刮刮卡效果 真的就仅仅是刮刮卡么

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/40162163 , 本文出自:[张鸿洋的博客] 非常久以前也过一个html5的刮刮 ...

  7. Java字符编码的转化问题

    概述: 我想字符串的编码问题的确会困扰到非常多开发人员.我近期也是被困扰到了. 问题是这种,我们通过二维码扫描来获得二维码中的信息.可是.我们的二维码的产生过程却是"多样化"的.即 ...

  8. LeetCode 69. Sqrt(x) (平方根)

    Implement int sqrt(int x). Compute and return the square root of x. x is guaranteed to be a non-nega ...

  9. Unix/Linux环境C编程新手教程(40) 初识文件操作

     1.函数介绍 close(关闭文件) 相关函数 open,fcntl,shutdown.unlink,fclose 表头文件 #include<unistd.h> 定义函数 int ...

  10. 配置hadoop集群一

    花了1天时间最终把环境搭建好了.整理了一下,希望对想学习hadoop的有所帮助. 资料下载:http://pan.baidu.com/s/1kTupgkn 包括了linux虚拟机.jdk, hadoo ...