\(\\\)

\(Description\)


一棵\(N\)个节点的树,每条边权都为\(1\)。

\(M\)组询问,每次给出三个点\(A_i,B_i,C_i\),求从三个点分别出发,移动到同一个点的路径最小权值和。

  • \(N,M\in [1,5\times10^5]\)

\(\\\)

\(Solution\)


  • 如果是两个点,显然在两点到\(Lca\)的路径上任意位置会合都是花费最小的方案。扩展到三个点,我们猜测最优答案也是产生在两点\(Lca\)或一段路径上。手玩一会样例或者自己造一点数据,可以发现一个事实:三点两两求\(Lca\),必然至少有两个\(Lca\)是同一个点,形象化的表示:

    图中所示的是最一般的情况,可以发现两个相同的\(Lca\)的深度一定不会大于单独的\(Lca\)的深度,因为相同的\(Lca\)产生于,单独的\(Lca\)与不产生这个单独的\(Lca\)的点求\(Lca\)。

  • 此时方案就显然了,图中所有单色的边是一定要被走一次的,如果在图中的\(L2\)处会和,双色的边会被\(b,c\)各走一次,而若在单独的\(Lca\)处会和,双色的边只会走一次,所以我们直接判断出单独的\(Lca\),让第三个点\((a)\)去往那里集合就好,路径长度可以在找\(Lca\)的时候顺便求出。

\(\\\)

\(Code\)


#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 500010
#define R register
#define gc getchar
using namespace std; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,m,t,tot,d[N],hd[N],f[N][20];
struct edge{int to,nxt;}e[N<<1]; inline void add(int u,int v){
e[++tot].to=v; e[tot].nxt=hd[u]; hd[u]=tot;
} queue<int> q;
inline void bfs(){
q.push(1); d[1]=1;
while(!q.empty()){
int u=q.front(); q.pop();
for(R int i=hd[u],v;i;i=e[i].nxt)
if(!d[v=e[i].to]){
d[v]=d[u]+1; f[v][0]=u;
for(R int i=1;i<=t;++i) f[v][i]=f[f[v][i-1]][i-1];
q.push(v);
}
}
} inline pair<int,int> lca(int u,int v){
int res=0;
if(d[u]>d[v]) u^=v^=u^=v;
for(R int i=t;~i;--i) if(d[f[v][i]]>=d[u]) v=f[v][i],res+=(1<<i);
if(u==v) return make_pair(u,res);
for(R int i=t;~i;--i)
if(f[u][i]!=f[v][i]) v=f[v][i],u=f[u][i],res+=(1<<(i+1));
return make_pair(f[u][0],res+2);
} int main(){
t=log2(n=rd())+1; m=rd();
for(R int i=1,u,v;i<n;++i){
u=rd(); v=rd(); add(u,v); add(v,u);
}
bfs();
pair<int,int> l1,l2,l3;
for(R int i=1,a,b,c;i<=m;++i){
a=rd(); b=rd(); c=rd();
l1=lca(a,b); l2=lca(a,c); l3=lca(b,c);
if(l1.first==l2.first) printf("%d %d\n",l3.first,l3.second+lca(l3.first,a).second);
else if(l1.first==l3.first) printf("%d %d\n",l2.first,l2.second+lca(l2.first,b).second);
else if(l2.first==l3.first) printf("%d %d\n",l1.first,l1.second+lca(l1.first,c).second);
}
return 0;
}

[ AHOI 2008 ] Meet的更多相关文章

  1. 「BZOJ 1831」「AHOI 2008」逆序对「贪心」

    题意 给定一个长度为\(n\),值域为\([1,k]\),某些位置不确定的数组,求最小的逆序对.\(n\leq 10^4, k \leq 100\) 题解 这题有人用前缀和优化\(dp\)过了,但是这 ...

  2. [AHOI 2008] 聚会

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1832 [算法] 最近公共祖先 [代码] #include<bits/stdc+ ...

  3. 1558:聚会 ybt

    1558:聚会 ybt 题解(看似很难,其实要是摸清了实质这就是个大水题) 上题目 1558:聚会 时间限制: 1000 ms         内存限制: 524288 KB提交数: 82     通 ...

  4. LOJ1036

    AHOI 2008 聚会 Y 岛风景美丽宜人,气候温和,物产丰富.Y 岛上有 N 个城市,有 N-1 条城市间的道路连接着它们.每一条道路都连接某两个城市.幸运的是,小可可通过这些道路可以走遍 Y 岛 ...

  5. How to disable Passwords must meet complexity requirements[windows 7]

    The Password complexity is a Local Policy setting named "Passwords must meet complexity require ...

  6. SQL Server 2008性能故障排查(三)——I/O

    原文:SQL Server 2008性能故障排查(三)--I/O 接着上一章:CPU瓶颈 I/O瓶颈(I/O Bottlenecks): SQLServer的性能严重依赖I/O子系统.除非你的数据库完 ...

  7. HDU1852 Beijing 2008(快速幂+特殊公式)

    As we all know, the next Olympic Games will be held in Beijing in 2008. So the year 2008 seems a lit ...

  8. 在离线环境中发布.NET Core至Windows Server 2008

    在离线环境中发布.NET Core至Windows Server 2008 0x00 写在开始 之前一篇博客中写了在离线环境中使用.NET Core,之后一边学习一边写了一些页面作为测试,现在打算发布 ...

  9. Windows Server 2008 R2常规安全设置及基本安全策略

    这篇文章主要介绍了Windows Web Server 2008 R2服务器简单安全设置,需要的朋友可以参考下 用的腾讯云最早选购的时候悲催的只有Windows Server 2008 R2的系统,原 ...

随机推荐

  1. Spring MVC 概述

    [简介] Spring MVC也叫Spring web mvc,属于表现层的框架.SpringMVC是Spring框架的一部分,是在Spring 3.0后发布的. 由以上Spring的结构图可以看出, ...

  2. 通过注解配置Bean(2)

    问:怎么用注解来配置bean与bean之间的引用关系? [组件装配] 1.<context:component-scan> 元素还会自动注册AutowiredAnnotationBeanP ...

  3. mybatis写当天 当月的数据 时间段数据https://www.cnblogs.com/xzjf/p/7600533.html

    mybatis写当天 当月的数据 时间段数据----https://www.cnblogs.com/xzjf/p/7600533.html

  4. Ubuntu 16.04安装PDF阅读器FoxitReader

    下载: https://www.foxitsoftware.cn/downloads/ 安装: tar zxvf FoxitReader2.4.1.0609_Server_x64_enu_Setup. ...

  5. Jenkins+Github持续集成

    由于最近团队代码库从coding迁移到github,在CI工具的选型上尝试了travis-ci和circle-ci,最后决定自己搭建CI服务器,而我也有幸认领了这个任务的调研,因此有了这篇文章. 之前 ...

  6. 在Java中按字节获得字符串长度的三种方法

    转载:http://www.blogjava.net/nokiaguy/archive/2010/04/11/317982.html 由于Java是基于Unicode编码的,因此,一个汉字的长度为1, ...

  7. LeetCode 203. Remove Linked List Elements (移除链表中的项)

    Remove all elements from a linked list of integers that have value val. ExampleGiven: 1 --> 2 --& ...

  8. LeetCode 160. Intersection of Two Linked Lists (两个链表的交点)

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  9. 51nod 1642 区间欧拉函数 && codeforce594D REQ

    画一下柿子就知道是求区间乘积乘区间内所有质因数的(p-1)/p(就是求欧拉的公式嘛) 看上去莫队就很靠谱然而时间O(nsqrt(n)logn)并不资瓷 还是离线,确定右端点,对于1~i的区间内的质因数 ...

  10. POI 读取word (word 2003 和 word 2007)(转,好用)

    POI 读取word (word 2003 和 word 2007)(转,好用) 转做的操作: 将作者文中失效的链接的正确链接放在失效链接的下面. 最近在给客户做系统的时候,用户提出需求,要能够导入 ...