bzoj5483: [Usaco2018 Dec]Balance Beam
又又又又又又又被踩爆了
首先容易写出这样的期望方程:f(1)=max(d(1),f(2)/2),f(n)=max(d(n),f(n-1)/2), f(i)=max(d(i),(f(i-1)+f(i+1))/2),d是直接下来的收益
令S(i)等于后面那一个东西,那么f(i)=max(d(i),S(i))
套了max很难直接求,但是S(i)和d(i)一定是定值,那些由S贡献的点实际上就是被它左右两边各一个点的d贡献的,更确切的,假如把那些点是由d贡献找出来,那些由S贡献的点实际上就是被它左右两边第一个被d贡献的点贡献的
这样一来假设这两个点为L,R,则f(i)=x到L的概率*d(L)+x到R的概率*d(R)
考虑这样的一个子问题:数轴上0~n长度为n一段中,求由x走到n的概率
设g(i)表示i走到n的概率,则g(0)=0,g(n)=1,g(i)=(g(i-1)+g(i+1))/2,明显这个是个等差数列啊!
那么公差就是1/n,x走到n的概率就是x/n
x走到0,同理g(0)=1,g(n)=0,公差为-1/n,概率就是n-x/n
所以f(i)=((R-x)*d(L)+(x-L)*d(R))/(R-L)
现在问题就在于如何找到那些由d贡献的点了,我们在平面直角坐标系中把(i,d(i))标出来,则这些点就是凸包上的点
why?看图,如果我们要判断x是不是靠d贡献

如图,((R-x)*d(L)+(x-L)*d(R))就是两个矩形的面积,容易发现两个圈画出来的面积是相等的,画出来的一段就是由L和R贡献出的S(x),它就在L和R的直线上,是这条直线的自变量取x时的贡献!也就是说,这个点在直线下方,就意味着S(x)>d(x),说明取d不如由L和R贡献。
完结撒花~~~
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int _=1e2;
const int maxn=1e5+_; struct point{int x,y;}p[maxn];
LL multi(point p1,point p2,point p0)
{
LL x1,y1,x2,y2;
x1=p1.x-p0.x;
y1=p1.y-p0.y;
x2=p2.x-p0.x;
y2=p2.y-p0.y;
return x1*y2-x2*y1;
}
int top,sta[maxn];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
scanf("%d",&n); sta[++top]=;
for(int i=;i<=n;i++)
{
p[i].x=i,scanf("%d",&p[i].y);
while(top>&&multi(p[sta[top]],p[i],p[sta[top-]])>=)top--;
sta[++top]=i;
}
p[n+].x=n+;
while(top>&&multi(p[sta[top]],p[n+],p[sta[top-]])>=)top--;
sta[++top]=n+; int L=,R=;
for(int i=;i<=n;i++)
{
while(L<top&&p[sta[L+]].x<=p[i].x)L++;
if(p[sta[L]].x==p[i].x)
printf("%lld\n",LL(p[i].y)*100000LL);
else
{
while(R<top&&p[sta[R]].x<=p[i].x)R++;
double d=(double(sta[R]-i)*double(p[sta[L]].y))/double(sta[R]-sta[L]) +
(double(i-sta[L])*double(p[sta[R]].y))/double(sta[R]-sta[L]);
d*=;
if(fabs(d-ceil(d))<=1e-)d+=1e-;
printf("%.0lf\n",floor(d));
}
} return ;
}
bzoj5483: [Usaco2018 Dec]Balance Beam的更多相关文章
- [bzoj5483][Usaco2018 Dec]Balance Beam_凸包_概率期望
bzoj5483 Usaco2018Dec Balance Beam 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=5483 数据范围:略. 题解 ...
- BZOJ5484: [Usaco2018 Dec]Sort It Out
5484: [Usaco2018 Dec]Sort It Out https://www.lydsy.com/JudgeOnline/problem.php?id=5484 Sol. 考虑没有在被喊叫 ...
- 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)
你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...
- Luogu5155 [USACO18DEC]Balance Beam
题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端 ...
- [USACO18DEC]Balance Beam
题目链接:这里 或者这里 答案是很显然的,记\(g(i)\)为在\(i\)下平衡木时的期望收益 那么\(g(i)=max(f(i),\frac{g(i-1)+g(i+1)}{2})\) 好了做完了 T ...
- 题解-USACO18DEC Balance Beam详细证明
(翻了翻其他的题解,觉得它们没讲清楚这个策略的正确性) Problem 洛谷5155 题意概要:给定一个长为\(n\)的序列,可以选择以\(\frac 12\)的概率进行左右移动,也可以结束并得到当前 ...
- BZOJ5487: [Usaco2018 Dec]Cowpatibility
Description 研究证明,有一个因素在两头奶牛能否作为朋友和谐共处这方面比其他任何因素都来得重要--她们是不是喜欢同 一种口味的冰激凌!Farmer John的N头奶牛(2≤N≤50,000) ...
- Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)
假设已经求出了在每个点的最优期望收益,显然最优策略是仅当移动一次后的期望收益>当前点收益时移动.对于初始点,其两边各存在一个最近的不满足上述条件的位置,因此从初始点开始随机游走,直到移动到这两个 ...
- p5155 [USACO18DEC]Balance Beam
传送门 分析 https://www.luogu.org/blog/22112/solution-p5155 代码 #include<bits/stdc++.h> using namesp ...
随机推荐
- C++ 使用成员初始化列表的一个小坑
注意在成员列表中初始化的顺序并不是列表顺序 而是: 在类中声明的顺序! EventLoop::EventLoop() :looping(false), quit(false),_tid(curThre ...
- BZOJ——1614: [Usaco2007 Jan]Telephone Lines架设电话线
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1930 Solved: 823[Submit][Status][Discuss] Description ...
- IntelliJ IDEA出现:This file is indented with tabs instead of 4 spaces的问题解决
根据阿里巴巴Java开发手册,不能使用Tab字符,改成4个字符,设置如下: 注意:是不选择! 一定要选择这个:
- Intel Edison —— 控制GPIO接口,网页显示传感器数值
前言 原创文章,转载引用务必注明链接. 因为是使用Typora(markdown)写好然后复制到论坛的,推荐直接访问我的网站以获得更好地阅读体验. Intel XDK IoT 开发环境很久之前就上手了 ...
- Koala - 使用
几天项目又加紧,样式想写又太慢! 下载考拉:http://pc6.dun.123ch.cn/download/koala%E7%BC%96%E8%AF%91%E5%B7%A5%E5%85%B7_30@ ...
- CentOS安装Openfire服务
原文::http://xiao987334176.blog.51cto.com/2202382/979677 系统是全新新安装的系统.版本号是Centos 5.6 x86 同步北京时间 # ntpda ...
- mmall 项目实战(一)项目初始化
1.创建 数据库 及 表 数据脚本: /* Navicat Premium Data Transfer Source Server : 182.92.82.103 Source Server Type ...
- HDU 2317 Nasty Hacks
Nasty Hacks Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- winform窗体继承泛型类时,设计器无法使用解决办法
当我们使用winform程序时,winform窗体程序和控件程序都是可以通过设计器进行控件拖拽的,但如果我们继承了一个带有泛型的form基类.那么设计器是无法使用的. 目前我没有找到根本解决的办法,但 ...
- ActionFilterAttribute之HtmlFilter,压缩HTML代码
当开启这个过滤器后,最终生成的HTML代码将会被压缩一下,在流量很大的网站中,能减少带宽成本就减少一点,何乐而不为? [csharp] view plaincopy using System; usi ...