又又又又又又又被踩爆了

首先容易写出这样的期望方程:f(1)=max(d(1),f(2)/2),f(n)=max(d(n),f(n-1)/2), f(i)=max(d(i),(f(i-1)+f(i+1))/2),d是直接下来的收益

令S(i)等于后面那一个东西,那么f(i)=max(d(i),S(i))

套了max很难直接求,但是S(i)和d(i)一定是定值,那些由S贡献的点实际上就是被它左右两边各一个点的d贡献的,更确切的,假如把那些点是由d贡献找出来,那些由S贡献的点实际上就是被它左右两边第一个被d贡献的点贡献的

这样一来假设这两个点为L,R,则f(i)=x到L的概率*d(L)+x到R的概率*d(R)

考虑这样的一个子问题:数轴上0~n长度为n一段中,求由x走到n的概率

设g(i)表示i走到n的概率,则g(0)=0,g(n)=1,g(i)=(g(i-1)+g(i+1))/2,明显这个是个等差数列啊!

那么公差就是1/n,x走到n的概率就是x/n

x走到0,同理g(0)=1,g(n)=0,公差为-1/n,概率就是n-x/n

所以f(i)=((R-x)*d(L)+(x-L)*d(R))/(R-L)

现在问题就在于如何找到那些由d贡献的点了,我们在平面直角坐标系中把(i,d(i))标出来,则这些点就是凸包上的点

why?看图,如果我们要判断x是不是靠d贡献

如图,((R-x)*d(L)+(x-L)*d(R))就是两个矩形的面积,容易发现两个圈画出来的面积是相等的,画出来的一段就是由L和R贡献出的S(x),它就在L和R的直线上,是这条直线的自变量取x时的贡献!也就是说,这个点在直线下方,就意味着S(x)>d(x),说明取d不如由L和R贡献。

完结撒花~~~

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int _=1e2;
const int maxn=1e5+_; struct point{int x,y;}p[maxn];
LL multi(point p1,point p2,point p0)
{
LL x1,y1,x2,y2;
x1=p1.x-p0.x;
y1=p1.y-p0.y;
x2=p2.x-p0.x;
y2=p2.y-p0.y;
return x1*y2-x2*y1;
}
int top,sta[maxn];
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n;
scanf("%d",&n); sta[++top]=;
for(int i=;i<=n;i++)
{
p[i].x=i,scanf("%d",&p[i].y);
while(top>&&multi(p[sta[top]],p[i],p[sta[top-]])>=)top--;
sta[++top]=i;
}
p[n+].x=n+;
while(top>&&multi(p[sta[top]],p[n+],p[sta[top-]])>=)top--;
sta[++top]=n+; int L=,R=;
for(int i=;i<=n;i++)
{
while(L<top&&p[sta[L+]].x<=p[i].x)L++;
if(p[sta[L]].x==p[i].x)
printf("%lld\n",LL(p[i].y)*100000LL);
else
{
while(R<top&&p[sta[R]].x<=p[i].x)R++;
double d=(double(sta[R]-i)*double(p[sta[L]].y))/double(sta[R]-sta[L]) +
(double(i-sta[L])*double(p[sta[R]].y))/double(sta[R]-sta[L]);
d*=;
if(fabs(d-ceil(d))<=1e-)d+=1e-;
printf("%.0lf\n",floor(d));
}
} return ;
}

bzoj5483: [Usaco2018 Dec]Balance Beam的更多相关文章

  1. [bzoj5483][Usaco2018 Dec]Balance Beam_凸包_概率期望

    bzoj5483 Usaco2018Dec Balance Beam 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=5483 数据范围:略. 题解 ...

  2. BZOJ5484: [Usaco2018 Dec]Sort It Out

    5484: [Usaco2018 Dec]Sort It Out https://www.lydsy.com/JudgeOnline/problem.php?id=5484 Sol. 考虑没有在被喊叫 ...

  3. 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)

    你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...

  4. Luogu5155 [USACO18DEC]Balance Beam

    题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端 ...

  5. [USACO18DEC]Balance Beam

    题目链接:这里 或者这里 答案是很显然的,记\(g(i)\)为在\(i\)下平衡木时的期望收益 那么\(g(i)=max(f(i),\frac{g(i-1)+g(i+1)}{2})\) 好了做完了 T ...

  6. 题解-USACO18DEC Balance Beam详细证明

    (翻了翻其他的题解,觉得它们没讲清楚这个策略的正确性) Problem 洛谷5155 题意概要:给定一个长为\(n\)的序列,可以选择以\(\frac 12\)的概率进行左右移动,也可以结束并得到当前 ...

  7. BZOJ5487: [Usaco2018 Dec]Cowpatibility

    Description 研究证明,有一个因素在两头奶牛能否作为朋友和谐共处这方面比其他任何因素都来得重要--她们是不是喜欢同 一种口味的冰激凌!Farmer John的N头奶牛(2≤N≤50,000) ...

  8. Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)

    假设已经求出了在每个点的最优期望收益,显然最优策略是仅当移动一次后的期望收益>当前点收益时移动.对于初始点,其两边各存在一个最近的不满足上述条件的位置,因此从初始点开始随机游走,直到移动到这两个 ...

  9. p5155 [USACO18DEC]Balance Beam

    传送门 分析 https://www.luogu.org/blog/22112/solution-p5155 代码 #include<bits/stdc++.h> using namesp ...

随机推荐

  1. 【ZOJ4053】Couleur(主席树,set,启发式)

    题意: 有n个位置,每个位置上的数字是a[i],现在有强制在线的若干个单点删除操作,每次删除的位置都不同,要求每次删除之后求出最大的连续区间逆序对个数 n<=1e5,1<=a[i]< ...

  2. leetcode 331. Verify Preorder Serialization of a Binary Tree

    传送门 331. Verify Preorder Serialization of a Binary Tree My Submissions QuestionEditorial Solution To ...

  3. HUNAN 11569 Just Another Knapsack Problem(AC自动机+dp)

    http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11569&courseid=0 给出目标串,每个子串和 ...

  4. 洛谷——P2298 Mzc和男家丁的游戏

    P2298 Mzc和男家丁的游戏 题目背景 mzc与djn的第二弹. 题目描述 mzc家很有钱(开玩笑),他家有n个男家丁(做过上一弹的都知道).他把她们召集在了一起,他们决定玩捉迷藏.现在mzc要来 ...

  5. Codeforces #471

    C(分段) 题意: 分析: 我们分别考虑p=2和p>=3的情况 当p=2的时候,个数明显是[L,R]内完全平方数的个数 当p>=3的时候,我们注意到这样的数字个数是1e6级别的,且a最多也 ...

  6. iOS APP 的生命周期

    1.在手机桌面上点击APP图标 - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDi ...

  7. Spring Boot集成Spring Data Reids和Spring Session实现Session共享

    首先,需要先集成Redis的支持,参考:http://www.cnblogs.com/EasonJim/p/7805665.html Spring Boot集成Spring Data Redis+Sp ...

  8. 安装ftp服务器

    Linux安装ftp组件 1  安装vsftpd组件 安装完后,有/etc/vsftpd/vsftpd.conf文件,是vsftp的配置文件. [root@bogon ~]# yum -y insta ...

  9. hdu 2795(单点改动)

    题意:有h×w大的公告板.有n条公告要写入,每条公告高度都是1,宽度是wi,每次从最上最左的空位写,假设有空位输出第几行.假设没有足够空位输出-1. 题解:注意h最大1e9.但事实上是看n的大小.由于 ...

  10. eclipse使用正则表达式查找文件内容

    今天有个需求,查找工程中包含汉字的所有文件,随即想到利用eclipse的search功能配合正则表达式. 在eclipse中Ctrl+H,然后在Containing text中输入[\u4e00-\u ...