luogu1169 棋盘制作
题目大意
有一个有m*n个格子的矩形,每个格子都有黑或白两种颜色。现要求将该矩形分别裁剪成一个小矩形或一个小正方形,使得这个矩形和正方形是个国际象棋棋盘,且面积最大。
题解
首先,为了简化问题,我们每隔一个格子将颜色翻转,这样题目就变成了最大01子矩阵问题。解决这类问题需要用到悬线法。
首先,我们规定一个半极大子矩阵为上、左、右边缘由于有障碍而不可继续向上、左、右方向延伸的矩阵。显然我们要求的矩阵是一个半极大子矩阵。对于一个这样的矩阵,我们定义悬线为上边缘的上一排的一个障碍点所在竖直线在矩阵内的部分。那么一个矩阵就相当于悬线在没有障碍的范围内左右移动的结果。因为矩阵中的每一个点都只对应唯一一个悬线,所以我们可以用通过枚举矩形中的每一个点的方法来枚举到所有的半极大子矩阵。首先悬线的长度可以递推求解。定义一个点对应悬线在半极大子矩形中向右移动的长度为RecR[row][col],向左移动的长度为RecL[row][col]。要知道这两个量,我们还需要知道该点可向左最远延伸的距离L[row][col]和向右最远延伸的距离R[row][col],对于一个点,其RecL[row][col] = min(row1,col1与row,col在同一悬线内,包括row, col){L[row1][col1]}。这样子矩阵的面积就可求了。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define Clear(a, val) memset(a, val, sizeof(a))
const int MAX_ROW = 2010, MAX_COL = 2010, INF = 0x3f3f3f3f;
int A[MAX_ROW][MAX_COL];
int HorL[MAX_ROW][MAX_COL], HorR[MAX_ROW][MAX_COL], H[MAX_ROW][MAX_COL], RecL[MAX_ROW][MAX_COL], RecR[MAX_ROW][MAX_COL];//Hor:Horizontal Rec:Rectangle
int TotRow, TotCol, AnsSq, AnsRec; void ChangeMap()//一黑一白改为连续黑连续白
{
int st = 1;
for (int row = 1; row <= TotRow; row++)
{
for (int col = st; col <= TotCol; col += 2)
A[row][col] = !A[row][col];
st = st == 1 ? 2 : 1;
}
} void Solve()
{
Clear(HorL, 0), Clear(HorR, 0), Clear(H, 0), Clear(RecL, INF), Clear(RecR, INF);
for (int row = 1; row <= TotRow; row++)
{
for (int col = 1; col <= TotCol; col++)
{
if(A[row][col])
{
HorL[row][col] = HorL[row][col - 1] + 1;
H[row][col] = H[row - 1][col] + 1;
}
}
for (int col = TotCol; col >= 1; col--)
HorR[row][col] = A[row][col] ? HorR[row][col + 1] + 1 : 0;
} for (int row = 1; row <= TotRow; row++)
{
for (int col = 1; col <= TotCol; col++)
{
if (A[row][col])
{
RecL[row][col] = min(HorL[row][col], RecL[row - 1][col]);
RecR[row][col] = min(HorR[row][col], RecR[row - 1][col]);
}
else
RecL[row][col] = RecR[row][col] = INF;
int curSqEdge = min(H[row][col], RecL[row][col] + RecR[row][col] - 1);
AnsSq = max(AnsSq, curSqEdge * curSqEdge);
AnsRec = max(AnsRec, H[row][col] * (RecR[row][col] + RecL[row][col] - 1));
}
}
} void ReverseMap()
{
for (int row = 1; row <= TotRow; row++)
for (int col = 1; col <= TotCol; col++)
A[row][col] = !A[row][col];
} int main()
{
scanf("%d%d", &TotRow, &TotCol);
for (int row = 1; row <= TotRow; row++)
for (int col = 1; col <= TotCol; col++)
scanf("%d", &A[row][col]);
ChangeMap();
Solve();
ReverseMap();
Solve();
printf("%d\n%d\n", AnsSq, AnsRec);
return 0;
}
luogu1169 棋盘制作的更多相关文章
- luogu1169 棋盘制作 (单调栈)
先预处理出来从每个位置 以0开始 往右交替最多能放多少格 然后就相当于对每一列做HISTOGRA #include<bits/stdc++.h> #define pa pair<in ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)
1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MB Submit: 1848 Solved: 936 [Submit][Sta ...
- bzoj 1057: [ZJOI2007]棋盘制作 单调栈
题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2027 Solved: 1019[Submit] ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- [P1169] 棋盘制作 &悬线法学习笔记
学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...
- 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
随机推荐
- android计算屏幕dp
首先我们来了解一些基本元素: px:像素,屏幕上的点. dpi:一英寸长的直线上的像素点的数量,即像素密度.标准值是160dp. /*** 正是因为dpi值其代表的特性,所以android项目的资源文 ...
- SQl基本操作——try catch
begin try ... end try begin catch ... end catch
- 如何利用Flashback Query 恢复误删除的数据
网上有很多关于数据回复的文章,这里整理一篇供大家参考,希望能帮助的大家! 推荐一家即时通讯云服务商:www.yun2win.com,功能包含im即时通讯.实时音视频.电子白板.屏幕共享的多种融合通讯云 ...
- Prime算法生成最小生成树
虽说是生成树,但我只将生成的边输出了.至于怎么用这些边来创建树...我不知道_(:з」∠)_ //Prime方法生成最小生成树 void GraphAdjacencyListWeight::Gener ...
- Windows Phone 8: NavigationInTransition实现页面切换效果
NavigationInTransition这个是实现页面切换效果,而且没控件来拖,要自己手动写, 将App.xaml.cs中InitializePhoneApplication()函数里的RootF ...
- Discuz! X3.1云平台QQ互联的Unknown column 'conuintoken' in 'field list' 解决办法
http://www.discuz.net/thread-3482497-1-1.html 由于程序安装默认数据表的结构和QQ互联数据表结构不同,安装Discuz! X3.1和升级Discuz! X3 ...
- C# 控件调整
//最大化 this.WindowState = FormWindowState.Maximized; //去掉标题栏 this.FormBorderStyle = FormBorderStyle.N ...
- id 转 entity
object 是 entity原始的类 要使用id转化成entity要先将id.getobject 然后将这个值 (entity)转化成entity entity ent =id.getentity& ...
- uva 1401
Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing ...
- js的StringBuffer类
function StringBuffer(str){ var arr = []; str = str || ""; arr.push(str); this.append = fu ...