题目大意

  有一个有m*n个格子的矩形,每个格子都有黑或白两种颜色。现要求将该矩形分别裁剪成一个小矩形或一个小正方形,使得这个矩形和正方形是个国际象棋棋盘,且面积最大。

题解

  首先,为了简化问题,我们每隔一个格子将颜色翻转,这样题目就变成了最大01子矩阵问题。解决这类问题需要用到悬线法。

  首先,我们规定一个半极大子矩阵为上、左、右边缘由于有障碍而不可继续向上、左、右方向延伸的矩阵。显然我们要求的矩阵是一个半极大子矩阵。对于一个这样的矩阵,我们定义悬线为上边缘的上一排的一个障碍点所在竖直线在矩阵内的部分。那么一个矩阵就相当于悬线在没有障碍的范围内左右移动的结果。因为矩阵中的每一个点都只对应唯一一个悬线,所以我们可以用通过枚举矩形中的每一个点的方法来枚举到所有的半极大子矩阵。首先悬线的长度可以递推求解。定义一个点对应悬线在半极大子矩形中向右移动的长度为RecR[row][col],向左移动的长度为RecL[row][col]。要知道这两个量,我们还需要知道该点可向左最远延伸的距离L[row][col]和向右最远延伸的距离R[row][col],对于一个点,其RecL[row][col] = min(row1,col1与row,col在同一悬线内,包括row, col){L[row1][col1]}。这样子矩阵的面积就可求了。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; #define Clear(a, val) memset(a, val, sizeof(a))
const int MAX_ROW = 2010, MAX_COL = 2010, INF = 0x3f3f3f3f;
int A[MAX_ROW][MAX_COL];
int HorL[MAX_ROW][MAX_COL], HorR[MAX_ROW][MAX_COL], H[MAX_ROW][MAX_COL], RecL[MAX_ROW][MAX_COL], RecR[MAX_ROW][MAX_COL];//Hor:Horizontal Rec:Rectangle
int TotRow, TotCol, AnsSq, AnsRec; void ChangeMap()//一黑一白改为连续黑连续白
{
int st = 1;
for (int row = 1; row <= TotRow; row++)
{
for (int col = st; col <= TotCol; col += 2)
A[row][col] = !A[row][col];
st = st == 1 ? 2 : 1;
}
} void Solve()
{
Clear(HorL, 0), Clear(HorR, 0), Clear(H, 0), Clear(RecL, INF), Clear(RecR, INF);
for (int row = 1; row <= TotRow; row++)
{
for (int col = 1; col <= TotCol; col++)
{
if(A[row][col])
{
HorL[row][col] = HorL[row][col - 1] + 1;
H[row][col] = H[row - 1][col] + 1;
}
}
for (int col = TotCol; col >= 1; col--)
HorR[row][col] = A[row][col] ? HorR[row][col + 1] + 1 : 0;
} for (int row = 1; row <= TotRow; row++)
{
for (int col = 1; col <= TotCol; col++)
{
if (A[row][col])
{
RecL[row][col] = min(HorL[row][col], RecL[row - 1][col]);
RecR[row][col] = min(HorR[row][col], RecR[row - 1][col]);
}
else
RecL[row][col] = RecR[row][col] = INF;
int curSqEdge = min(H[row][col], RecL[row][col] + RecR[row][col] - 1);
AnsSq = max(AnsSq, curSqEdge * curSqEdge);
AnsRec = max(AnsRec, H[row][col] * (RecR[row][col] + RecL[row][col] - 1));
}
}
} void ReverseMap()
{
for (int row = 1; row <= TotRow; row++)
for (int col = 1; col <= TotCol; col++)
A[row][col] = !A[row][col];
} int main()
{
scanf("%d%d", &TotRow, &TotCol);
for (int row = 1; row <= TotRow; row++)
for (int col = 1; col <= TotCol; col++)
scanf("%d", &A[row][col]);
ChangeMap();
Solve();
ReverseMap();
Solve();
printf("%d\n%d\n", AnsSq, AnsRec);
return 0;
}

  

luogu1169 棋盘制作的更多相关文章

  1. luogu1169 棋盘制作 (单调栈)

    先预处理出来从每个位置 以0开始 往右交替最多能放多少格 然后就相当于对每一列做HISTOGRA #include<bits/stdc++.h> #define pa pair<in ...

  2. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

  3. 洛谷 P1169 [ZJOI2007]棋盘制作

    2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...

  4. BZOJ1057 [ZJOI2007]棋盘制作(极大化思想)

    1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MB Submit: 1848  Solved: 936 [Submit][Sta ...

  5. bzoj 1057: [ZJOI2007]棋盘制作 单调栈

    题目链接 1057: [ZJOI2007]棋盘制作 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 1019[Submit] ...

  6. BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )

    对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...

  7. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

  8. 悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作

    题面:P1169 [ZJOI2007]棋盘制作 题解: 基本是悬线法板子,只是建图判断时有一点点不同. 代码: #include<cstdio> #include<cstring&g ...

  9. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

随机推荐

  1. 使用GCD验证码倒计时

    __block int timeout = 60; dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY ...

  2. [ HAOI 2010 ] 最长公共子序列

    \(\\\) \(Description\) 求两个长度\(\le5000\)的大写字母串的\(LCS\)长度及个数,定义两\(LCS\)中某一字符在两序列出现位置有一处不同就视为不同. \(\\\) ...

  3. [ SDOI 2009 ] HH的项链 & [ HEOI 2012 ] 采花

    \(\\\) \(Description\) 给出一个长为\(N\)的序列,\(M\)次询问区间\([L_i,R_i]\)内不同数字的个数. \(N\in [1,5\times 10^4]\),\(M ...

  4. oracle 入门笔记--v$sql和v$sqlarea视图(转载)

    转载于作者:dbtan 原文链接:http://www.dbtan.com/2009/12/vsql-and-vsqlarea-view.html v$sql和v$sqlarea视图: 上文提到,v$ ...

  5. 4星|《JAC写给外贸公司老板的企管书》:善总结爱学习、有业绩的老外贸的经验谈

    作者从事外贸10余年,作出了业绩,也善总结.爱学习.爱分享.本书是作者在外贸行业的从业经验集.有一些战略方面的,比如开发小语种市场,大部分都是战术方面的操作细节(比如如何做营销),应该是非常适合从业者 ...

  6. Python元类(metaclass)以及元类实现单例模式

    这里将一篇写的非常好的文章基本照搬过来吧,这是一篇在Stack overflow上很热的帖子,我看http://blog.jobbole.com/21351/这篇博客对其进行了翻译. 一.理解类也是对 ...

  7. day41 网络编程

    目录 网络架构 单机架构 CS架构 BS架构 互联网和互联网的组成(教材版) 边缘部分: 核心部分: 互联网的组成 硬件 软件 打开网页的过程(科普版) 物理层 数据链路层 网络层 传输层 抽象层 网 ...

  8. Sort HDU5884(二分+多叉哈夫曼树)

    HDU5884 Sort 题意:有n个序列要进行归并,每次归并的代价是两个序列的长度的和,要求最终的代价不能超过规定的T,求在此前提下一次能同时进行归并的序列的个数k. 思路:还是太单纯,看完题目一直 ...

  9. 关于while((c=getchar()))的一些应用与思考

    最近做题发现一个特别牛逼又特别神奇的读取入字符串的方法 while((c=getchar())!=....) { //do something } 为什么说强大呢,首先这个表达式对空格回车都不怕,他不 ...

  10. 三、Scrapy中选择器用法

    官方示例源码<html> <head>  <base href='http://example.com/' />  <title>Example web ...