1、kfold:自己分样本来交叉验证迭代

  • 导入模块:from sklearn.model_selection import KFold

  • 参数:

KFold(n_splits=3, shuffle=False, random_state=None)
'''
n_splits : int, default=3
Number of folds. Must be at least 2.
shuffle : boolean, optional
Whether to shuffle the data before splitting into batches.
random_state : int, RandomState instance or None, optional, default=None
If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Used when shuffle == True.
'''

n_splits:就是将样本分成多少份。进行k折验证

shuffle:是否在分割成批次之前将数据洗牌。

random_state:如果INT,随机状态是随机数生成器所使用的种子;如果是随机状态实例,随机数是随机数生成器;如果没有,随机数生成器是NP-随机使用的随机状态实例。当洗牌= =真时使用。

  • 代码示例

from sklearn.model_selection import KFold
kf = KFold(n_splits=5,shuffle=False)
c_range= [0.01,0.1,1,10,100]
for C in c_range:
    for train,test in kf.split(X):
        lr = LogisticRegression(C = C, penalty = 'l1')
        lr.fit(X.iloc[train,:],Y.iloc[train,:].values.ravel())
        y_pred = lr.predict(X.iloc[test,:].values)

2、【交叉验证度量】直接交叉验证cross_val_score

  

sklearn学习6----交叉验证的更多相关文章

  1. sklearn中的交叉验证(Cross-Validation)

    这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sk ...

  2. sklearn 中的交叉验证

    sklearn中的交叉验证(Cross-Validation) sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的 ...

  3. 如何调用sklearn模块做交叉验证

    终于搞明白了如何用sklearn做交叉验证!!! 一般在建立完模型之后,我们要预测模型的好坏,为了试验的可靠性(排除一次测试的偶然性)我们要进行多次测试验证,这时就要用交叉验证. sklearn中的s ...

  4. 基于sklearn和keras的数据切分与交叉验证

    在训练深度学习模型的时候,通常将数据集切分为训练集和验证集.Keras提供了两种评估模型性能的方法: 使用自动切分的验证集 使用手动切分的验证集 一.自动切分 在Keras中,可以从数据集中切分出一部 ...

  5. 莫烦sklearn学习自修第七天【交叉验证】

    1. 什么是交叉验证 所谓交叉验证指的是将样本分为两组,一组为训练样本,一组为测试样本:对于哪些数据分为训练样本,哪些数据分为测试样本,进行多次拆分,每次将整个样本进行不同的拆分,对这些不同的拆分每个 ...

  6. 使用sklearn进行交叉验证

    模型评估方法 假如我们有一个带标签的数据集D,我们如何选择最优的模型? 衡量模型好坏的标准是看这个模型在新的数据集上面表现的如何,也就是看它的泛化误差.因为实际的数据没有标签,所以泛化误差是不可能直接 ...

  7. Sklearn 中的 CrossValidation 交叉验证

    1. 交叉验证概述 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 最先 ...

  8. [FML]学习笔记一Cross-validation交叉验证

    在实际的工程中,有时labeled data的数量不足以留出validation sample(验证样本)否则会导致training sample(训练样本)的数量太少.为了解决这个问题,我们引入一种 ...

  9. sklearn交叉验证-【老鱼学sklearn】

    交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法.于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证. 一开始 ...

随机推荐

  1. Spring Boot 项目学习 (一) 项目搭建

    0 引言 本文主要记录借用Idea 开发环境下,搭建 Spring Boot 项目框架的过程. 1 系列文档目录 Spring Boot 项目学习 (一) 项目搭建 Spring Boot 项目学习 ...

  2. N1-1 - 树 - Minimum Depth of Binary Tree

    题目描述: Given a binary tree, find its minimum depth.The minimum depth is the number of nodes along the ...

  3. C++ STL - queue使用详解

    c++队列模板类的定义在<queue>头文件中,queue 模板类需要两个模板参数,一个是元素类型,一个容器类型,元素类型是必要的,容器类型是可选的,默认为deque 类型. 下面详细介绍 ...

  4. SpringBoot2整合activiti6环境搭建

    SpringBoot2整合activiti6环境搭建 依赖 <dependencies> <dependency> <groupId>org.springframe ...

  5. 使用LeNet训练自己的手写图片数据

    一.前言 本文主要尝试将自己的数据集制作成lmdb格式,送进lenet作训练和测试,参考了http://blog.csdn.net/liuweizj12/article/details/5214974 ...

  6. 2018 MAC下安装Redis和Redis可视化工具RDM并连接Redis

    实验环境:一台mac V:10.13.6 一.安装redis brew install redis 二.安装RDM 直接下载安装rdm dmg文件 链接: https://pan.baidu.com/ ...

  7. oracle 禁用外键约束

    1.ORACLE数据库中的外键约束名都在表user_constraints中可以查到.其中constraint_type='R'表示是外键约束.2.启用外键约束的命令为:alter table tab ...

  8. socketpair和pipe的区别

    http://blog.csdn.net/bingqingsuimeng/article/details/9055499 管道pipe是半双工的,pipe两次才能实现全双工,使得代码复杂.socket ...

  9. 2016.02.23,英语,《Vocabulary Builder》Unit 01

    Bell:来源于拉丁语,含义为war.fight,其中Bellona [bә'lәunә]是罗马女战神的名字,她的丈夫是战神Mars.antebellum: [ˌænti'beləm] adj. 战前 ...

  10. Win+X

    Win+X 方便的快捷键,可以快速使用命令行和运行!