pid=5407">【HDOJ 5407】 CRB and Candies



赛后看这题题解仅仅有满眼的迷茫………………

g(N) = LCM(C(N,0),C(N,1),...,C(N,N))

f(n)\
=\ LCM(1, 2, ..., n)f(n) = LCM(1,2,...,n),
the fact g(n)\
=\ f(n+1) / (n+1)g(n) = f(n+1)/(n+1)

f(n)\ =\ LCM(1, 2, ..., n)f(1)
= 1

If n\
=p^{k}n =p​k​​ then f(n)\
=\ f(n-1) \times \ pf(n) = f(n−1)× p,
else f(n)\
=\ f(n-1)f(n) = f(n−1).

和不断的woc…… 后来QAQ巨找到了推导的文章。

。。

恩……贴上来……

http://www.zhihu.com/question/34859879

感觉我有公式恐惧症。。

看到长串公式就犯晕= = 巨巨们研究研究吧…………

感觉依据题解能做出来已经非常好了

事实上这题另一点是要取余 因为须要取余 不能做除法 因此要求个分母的乘法逆元 刚好在攻数论的扩欧,扩欧小费马都能做 前一篇有扩欧的不错的帖子链接 有兴趣的能够去瞅瞅

本题代码例如以下:

#include <iostream>
#include <cstdio>
#include <cstring> using namespace std;
#define sz 1000000
#define ll long long
const int mod = 1e9+7; int p[sz+1];
ll f[sz+1]; bool ok(ll x)
{
int t = p[x];
while(x%t == 0 && x > 1) x /= t;
return x == 1;
} void Init()
{
int i,j;
for(i = 1; i <= sz; ++i) p[i] = i;
for(i = 2; i <= sz; ++i)
if(p[i] == i)
for(j = i+i; j <= sz; j += i)
if(p[j] == j) p[j] = i; f[0] = 1;
for(i = 1; i <= sz; ++i)
{
if(ok(i)) f[i] = f[i-1]*p[i]%mod;
else f[i] = f[i-1];
}
}
//扩欧
//int e_gcd(int a,int b,int &x,int &y)
//{
// if(!b)
// {
// x = 1;
// y = 0;
// return a;
// }
// ll tmp = x,ans = e_gcd(b,a%b,x,y);
// tmp = x;
// x = y;
// y = tmp - a/b*y;
// return ans;
//} ll pow(ll a,int m)
{
ll ans = 1;
for(;m; m >>= 1, a= a*a%mod)
if(m&1) ans = ans*a%mod;
return ans;
} ll cal(int a,int m)
{
//扩欧
// int x,y;
// int gcd = e_gcd(a,m,x,y);
// return (x/gcd+m)%m;
//小费马
return pow(a,m-2);
} int main()
{
Init();
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("%lld\n",f[n+1]*cal(n+1,mod)%mod);
}
return 0;
}

【HDOJ 5407】 CRB and Candies (大犇推导的更多相关文章

  1. 数论 HDOJ 5407 CRB and Candies

    题目传送门 题意:求LCM (C(N,0),C(N,1),...,C(N,N)),LCM是最小公倍数的意思,C函数是组合数. 分析:先上出题人的解题报告 好吧,数论一点都不懂,只明白f (n + 1) ...

  2. Hdu 5407 CRB and Candies (找规律)

    题目链接: Hdu 5407 CRB and Candies 题目描述: 给出一个数n,求lcm(C(n,0),C[n,1],C[n-2]......C[n][n-2],C[n][n-1],C[n][ ...

  3. HDU 5407——CRB and Candies——————【逆元+是素数次方的数+公式】

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  4. 2015 Multi-University Training Contest 10 hdu 5407 CRB and Candies

    CRB and Candies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  5. HDU 5407 CRB and Candies(LCM +最大素因子求逆元)

    [题目链接]pid=5407">click here~~ [题目大意]求LCM(Cn0,Cn1,Cn2....Cnn)%MOD 的值 [思路]来图更直观: 这个究竟是怎样推出的.说实话 ...

  6. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  7. HDU 5407 CRB and Candies

    题意:给一个正整数k,求lcm((k, 0), (k, 1), ..., (k, k)) 解法:在oeis上查了这个序列,得知答案即为lcm(1, 2, ..., k + 1) / (k + 1),而 ...

  8. hdu 5407 CRB and Candies(组合数+最小公倍数+素数表+逆元)2015 Multi-University Training Contest 10

    题意: 输入n,求c(n,0)到c(n,n)的所有组合数的最小公倍数. 输入: 首行输入整数t,表示共有t组测试样例. 每组测试样例包含一个正整数n(1<=n<=1e6). 输出: 输出结 ...

  9. CRB and Candies LCM 性质

    题目 CRB and Candies 题意 \[ \text{给定正整数N,求} LCM \lbrace C \left(N , 0 \right),C\left(N , 1 \right),..., ...

随机推荐

  1. 安卓系统底层C语言算法之測试參数是几个long型的算法

    #include <stdio.h> #define BITS_PER_LONG (sizeof(unsigned long) * 8) //求一个数x是几个long的长度 #define ...

  2. R语言基础-数组和列表

    数组(array) 一维数据是向量,二维数据是矩阵,数组是向量和矩阵的直接推广,是由三维或三维以上的数据构成的. 数组函数是array(),语法是:array(dadta, dim),当中data必须 ...

  3. 拥抱Mac之码农篇

    拥抱Mac之码农篇 使用Mac大概两年时间.之前用着公司配的一台27寸的iMac.无奈机械硬盘严重拖慢速度,影响工作心情.于是入手Macbook Retina 13.这两年的开发工作所有在Mac上完毕 ...

  4. 2016.3.17__ JavaScript基础_1__第十二天

    Javascript基础 首先说声抱歉. 今日涉及内容难易度不统一,所以很多比較基础的属性直接通过思维导图展示了. 同一时候须要注意,今日思维导图中的内容和笔记中并非一一相应的,请读者自行对比查看. ...

  5. asp.net web site中reference的version的autoupdate

    https://stackoverflow.com/questions/833924/visual-studio-stop-auto-update-on-references This is vali ...

  6. NEUOJ 1702 撩妹全靠魅力值 (三维偏序)

    题目链接:http://acm.neu.edu.cn/hustoj/problem.php?id=1702 题目大意:就是问每个人三个属性同时不低于另外几个人....人不分先后 经典的三维偏序问题 解 ...

  7. python中struct模块

    # #********struct模块********# # 1.按照指定格式将Python数据转换为字符串,该字符串为字节流,如网络传输时, # 不能传输int,此时先将int转化为字节流,然后再发 ...

  8. GreenDao 3.X之基本使用

    在GreenDao 3.X之注解已经了解到GreenDao 3.0的改动及注解.对于数据库的操作,无异于增删改查等四个操作.下面我们将了解GreenDao 3.X如何使用? AbstractDao 所 ...

  9. UDP协议总结

    我们已经讲解了物理层.连接层和网络层.最开始的连接层协议种类繁多(Ethernet.Wifi.ARP等等).到了网络层,我们只剩下一个IP协议(IPv4和IPv6是替代关系).进入到传输层(trans ...

  10. 验证码模拟登录TestHome

    前面我们做了一个xsrf的知乎的模拟登录,那么今天将会给大家分享一下小弟写的一段带验证码的登录脚本.   今天我们要做的是testerhome的模拟登录,在做这个模拟登录的时候,我发现需要验证码才能登 ...