【链接】 我是链接,点我呀:)

【题意】

在这里输入题意

【题解】

设fi表示深度为i的树个数,si是fi的前缀和,即si为深度不超过i树的个数。
那么si=s[i-1]^n + 1

就是说 先选一个节点作为根节点 然后选n个深度不超过i-1的树接在根节点下面。

这n个子树每个子树都有s[i-1]种取法。

所以是它的n次方。

注意:si这里混杂了深度为i和小于i的树。但没有深度为0的了,所以把这个深度为0的一个节点加上去就好.也即递推式中的加1

最后答案就是s[d]-s[d-1]了

用java的biginteger写

(加一个快速幂

【代码】

import java.math.BigInteger;
import java.util.*;
public class Main { private static BigInteger ksm(BigInteger x,int y) {
BigInteger temp = new BigInteger("1");
while (y>0) {
if ((y&1)==1) temp = temp.multiply(x);
x = x.multiply(x);
y>>=1;
}
return temp;
} public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
int n,d;
n = cin.nextInt();d = cin.nextInt();
BigInteger a = new BigInteger("1");
for (int i = 1;i <= d;i++) {
BigInteger b = ksm(a,n);
b = b.add(new BigInteger("1"));
if (i==d)
a = b.subtract(a);
else
a = b;
}
System.out.println(a);
}
}

【BZOJ 1089】[SCOI2003]严格n元树的更多相关文章

  1. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  2. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  3. BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度

    题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...

  4. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  5. bzoj 1089: [SCOI2003]严格n元树【dp+高精】

    设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...

  6. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  7. 【noi 2.6_9280】&【bzoj 1089】严格n元树(DP+高精度+重载运算符)

    题意:定义一棵树的所有非叶节点都恰好有n个儿子为严格n元树.问深度为d的严格n元树数目. 解法:f[i]表示深度为<=i的严格n元树数目.f[i]-f[i-1]表示深度为i的严格n元树数目.f[ ...

  8. 1089: [SCOI2003]严格n元树

    好久没更新了..于是节操掉尽python水过本来就水的题.. n,d=map(int, raw_input().split()) if d==0: print 1 else: f=[1] for i ...

  9. BZOJ1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 762  Solved: 387[Submit][Status ...

  10. bzoj1089 [SCOI2003]严格n元树(dp+高精)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1899  Solved: 954[Submit][Statu ...

随机推荐

  1. POJ 2774 Long Long Message (后缀数组+二分)

    题目大意:求两个字符串的最长公共子串长度 把两个串接在一起,中间放一个#,然后求出height 接下来还是老套路,二分出一个答案ans,然后去验证,如果有连续几个位置的h[i]>=ans,且存在 ...

  2. libvirtd.service

    [root@kvm-server ~]# systemctl status libvirtd.service ● libvirtd.service - Virtualization daemon Lo ...

  3. React 中的 refs的应用

    React Refs React 支持一种非常特殊的属性 Ref ,你可以用来绑定到 render() 输出的任何组件上. 这个特殊的属性允许你引用 render() 返回的相应的支撑实例( back ...

  4. linux gnome kde点滴

    2014.12.08 下面切换的方法对于fedora 17没有效果,对于fedora 17, 要使用system-switch-displaymanager,出现 点击相应的选项,然后就进入相应的启动 ...

  5. Restful技术

    一.概述 Restful技术是一种架构风格(Representational State Transfer)表现层状态转化,而不是一种编程标准. 之前前后端混在一起,前端通过mapping映射找到后端 ...

  6. @crossorigin注解跨域

    在@controller中类的头部有一个@CrossOrigin注解. @CrossOrigin是用来处理跨域请求的注解 先来说一下什么是跨域: (站在巨人的肩膀上) 跨域,指的是浏览器不能执行其他网 ...

  7. Java 递归、尾递归、非递归 处理阶乘问题

    n!=n*(n-1)! import java.io.BufferedReader; import java.io.InputStreamReader; /** * n的阶乘,即n! (n*(n-1) ...

  8. Hadoop实战:使用Combiner提高Map/Reduce程序效率

    好不easy算法搞定了.小数据測试也得到了非常好的结果,但是扔到进群上.挂上大数据就挂了.无休止的reduce不会结束了. .. .. .... .. ... .. ================= ...

  9. m_Orchestrate learning system---五、学的越多,做的越快

    m_Orchestrate learning system---五.学的越多,做的越快 一.总结 一句话总结: 1.上传的图像文件用input('post.')方法取不到是为什么? 图片不来就这样取不 ...

  10. vue中的swiper element ui

    欢迎加入前端交流群交流知识&&获取视频资料:749539640 很多同学问,怎么把swiper引入到vue的脚手架里去,之前的一篇博客有提到怎么引入,但是后来感觉不怎么好,还是用一些v ...