K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。

聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。

在聚类问题中,给我们的训练样本是,每个,没有了y。

K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:

1、 随机选取k个聚类质心点(cluster centroids)为

2、 重复下面过程直到收敛 {

对于每一个样例i,计算其应该属于的类

对于每一个类j,重新计算该类的质心

}

K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。

下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:

J函数表示每个样本点到其质心的距离平方和。K-means是要将J调整到最小。假设当前J没有达到最小值,那么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。这两个过程就是内循环中使J单调递减的过程。当J递减到最小时,和c也同时收敛。(在理论上,可以有多组不同的和c值能够使得J取得最小值,但这种现象实际上很少见)。

由于畸变函数J是非凸函数,意味着我们不能保证取得的最小值是全局最小值,也就是说k-means对质心初始位置的选取比较感冒,但一般情况下k-means达到的局部最优已经满足需求。但如果你怕陷入局部最优,那么可以选取不同的初始值跑多遍k-means,然后取其中最小的J对应的和c输出。

下面累述一下K-means与EM的关系,首先回到初始问题,我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

这个过程有几个难点,第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。这些问题在以后的篇章里回答。

这里只是指出EM的思想,E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

上面的阐述有点费解,对应于K-means来说就是我们一开始不知道每个样例对应隐含变量也就是最佳类别。最开始可以随便指定一个给它,然后为了让P(x,y)最大(这里是要让J最小),我们求出在给定c情况下,J最小时的(前面提到的其他未知参数),然而此时发现,可以有更好的(质心与样例距离最小的类别)指定给样例,那么得到重新调整,上述过程就开始重复了,直到没有更好的指定。这样从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。

R-kmeans聚类算法的更多相关文章

  1. 数据分析与挖掘 - R语言:K-means聚类算法

    一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 1.分析题目--有一个用户点击数据样本(husercollect)--按用户访问的 ...

  2. K-Means 聚类算法

    K-Means 概念定义: K-Means 是一种基于距离的排他的聚类划分方法. 上面的 K-Means 描述中包含了几个概念: 聚类(Clustering):K-Means 是一种聚类分析(Clus ...

  3. k-means聚类算法python实现

    K-means聚类算法 算法优缺点: 优点:容易实现缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢使用数据类型:数值型数据 算法思想 k-means算法实际上就是通过计算不同样本间的距离来判断他 ...

  4. 机器学习六--K-means聚类算法

    机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...

  5. 一步步教你轻松学K-means聚类算法

    一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理 ...

  6. K-means聚类算法原理和C++实现

    给定训练集$\{x^{(1)},...,x^{(m)}\}$,想把这些样本分成不同的子集,即聚类,$x^{(i)}\in\mathbb{R^{n}}$,但是这是个无标签数据集,也就是说我们再聚类的时候 ...

  7. K-means聚类算法(转)

    K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别与之对应.但是 ...

  8. Hadoop平台K-Means聚类算法分布式实现+MapReduce通俗讲解

        Hadoop平台K-Means聚类算法分布式实现+MapReduce通俗讲解 在Hadoop分布式环境下实现K-Means聚类算法的伪代码如下: 输入:参数0--存储样本数据的文本文件inpu ...

  9. 03-01 K-Means聚类算法

    目录 K-Means聚类算法 一.K-Means聚类算法学习目标 二.K-Means聚类算法详解 2.1 K-Means聚类算法原理 2.2 K-Means聚类算法和KNN 三.传统的K-Means聚 ...

  10. K-Means 聚类算法原理分析与代码实现

    前言 在前面的文章中,涉及到的机器学习算法均为监督学习算法. 所谓监督学习,就是有训练过程的学习.再确切点,就是有 "分类标签集" 的学习. 现在开始,将进入到非监督学习领域.从经 ...

随机推荐

  1. 使用STS时遇到的小“麻烦”

    背景 今天尝试着用STS(Spring Tool Suite)建立了一个Maven webapp来做一个SpringMVC的小demo,在使用的过程中就遇到了一些小麻烦!!记录在此的目的,其一是为了自 ...

  2. vue学习之vue基本功能初探

    vue学习之vue基本功能初探: 采用简洁的模板语法将声明式的将数据渲染进 DOM: <div id="app"> {{ message }} </div> ...

  3. Hadoop安全(2)——————UserGroupInformation

    UserGroupInformation保存hadoop用户及组信息 此类包装JAAS Subject,并提供确定用户的用户名和组的方法.它支持Windows,Unix和Kerberos登录模块.

  4. snmp之GenericAddress

    GenericAddress 注册地址类型,而不是默认的,第一次调用解析(java.lang.String的)方法之前,设置系统属性ADDRESS_TYPES_PROPERTIES. 这个类涉及到了工 ...

  5. SQLserver2008r2安装过程

    首先,下载SQLserver2008的安装包,下载完成打开是以下界面 点击开始安装,随着安装进程,点下一步 . 接着来到设置角色的过程,点击SQL功能安装 然后按下一步,来到功能选择,点击" ...

  6. 童话故事 --- 通信协议之 HDLC 浅析

    高飞狗: "高飞的白鹭浮水的鹅,唐诗里有画-" 布鲁托: "高飞狗,又在做你的高飞梦哪!" 高飞狗: "哈罗,布鲁托,这几天好郁闷呐!" 布 ...

  7. apache一个IP一个端口对应多个域名

    一个IP一个端口对应多个域名: NameVirtualHost XXX.XXX.XXX.XXX:80 <VirtualHost XXX.XXX.XXX.XXX:80> ServerAdmi ...

  8. jquery.form.js的重置表单增加hidden重置代码

    jquery.form.js的resetForm()方法无法重置hidden元素,打开文件在1460行加上以下代码即可

  9. vue2+webpack使用1--初识默认展示页面

    1 从安装好的展示 vue2+webpack项目开始 2 关键目录及文件 3 关系图 4 类比nodejs项目的理解   // src/main.js import Vue from 'vue' // ...

  10. ThinkJS框架入门详细教程(二)新手入门项目

    一.准备工作 参考前一篇:ThinkJS框架入门详细教程(一)开发环境 安装thinkJS命令 npm install -g think-cli 监测是否安装成功 thinkjs -v 二.创建项目 ...