POJ 3398 Perfect Service(树型动态规划,最小支配集)

Description

A network is composed of N computers connected by N − 1 communication links such that any two computers can be communicated via a unique route. Two computers are said to be adjacent if there is a communication link between them. The neighbors of a computer is the set of computers which are adjacent to it. In order to quickly access and retrieve large amounts of information, we need to select some computers acting as servers to provide resources to their neighbors. Note that a server can serve all its neighbors. A set of servers in the network forms a perfect service if every client (non-server) is served by exactly one server. The problem is to find a minimum number of servers which forms a perfect service, and we call this number perfect service number.

We assume that N (≤ 10000) is a positive integer and these N computers are numbered from 1 to N. For example, Figure 1 illustrates a network comprised of six computers, where black nodes represent servers and white nodes represent clients. In Figure 1(a), servers 3 and 5 do not form a perfect service because client 4 is adjacent to both servers 3 and 5 and thus it is served by two servers which contradicts the assumption. Conversely, servers 3 and 4 form a perfect service as shown in Figure 1(b). This set also has the minimum cardinality. Therefore, the perfect service number of this example equals two.



Your task is to write a program to compute the perfect service number.

Input

The input consists of a number of test cases. The format of each test case is as follows: The first line contains one positive integer, N, which represents the number of computers in the network. The next N − 1 lines contain all of the communication links and one line for each link. Each line is represented by two positive integers separated by a single space. Finally, a 0 at the (N + 1)th line indicates the end of the first test case.

The next test case starts after the previous ending symbol 0. A −1 indicates the end of the whole inputs.

Output

The output contains one line for each test case. Each line contains a positive integer, which is

the perfect service number.

Sample Input

6

1 3

2 3

3 4

4 5

4 6

0

2

1 2

-1

Sample Output

2

1

Http

POJ:https://vjudge.net/problem/POJ-3398

Source

树型动态规划,最小支配集

题目大意

在一棵n个点的树中求一个最小的点集,使得该树上的点满足在这个子集中或与子集中的点相邻,另外,不在该点集中的还满足有且仅与一个在点集中的点相邻。

解决思路

这道题的解决方法与POJ3659差不多,基本的思路可以参照我以前写的文章

那么这道题不同的地方就是非服务器不能连接到多台服务器,所以我们的动态转移方程就要改一改。

(这里先假设读者已经阅读了笔者在上面给出的文章,本文中的各变量意义与上文中的一致)

首先,关于F[u][0]的改变。因为F[u][0]代表是把u作为服务器的情况,所以在本题中它不能由F[v][1]推导得,因为F[v][1]表示v被v的子节点覆盖,若由被u覆盖,与题意相悖。

第二,F[u][2]数组不能从F[v][2]推导得,同样也是上面的原因

第三,F[u][1]现在有且只能被一个子节点覆盖,所以笔者把F[u][1]的计算方式改变了一下(具体方式请看代码,非常巧妙哦!)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std; const int maxN=10001;
const int inf=147483647; int n;
int cnt;
vector<int> E[maxN];
bool vis[maxN];
int F[maxN][5]; void dfs(int u); int main()
{
while (cin>>n)
{
if (n==-1)
break;
for (int i=1;i<=n;i++)
E[i].clear();
for (int i=1;i<n;i++)
{
int x,y;
cin>>x>>y;
E[x].push_back(y);
E[y].push_back(x);
}
int A;
cin>>A;
memset(vis,0,sizeof(vis));
memset(F,0,sizeof(vis));
dfs(1);
cout<<min(F[1][1],F[1][0])<<endl;
if (A==-1)
break;
}
return 0;
} void dfs(int u)
{
vis[u]=1;
F[u][0]=1;
F[u][2]=0;
F[u][1]=inf;
for (int i=0;i<E[u].size();i++)
{
int v=E[u][i];
if (vis[v]==0)
{
dfs(v);
F[u][0]+=min(F[v][0],F[v][2]);
F[u][2]+=F[v][1];
F[u][1]=min(F[u][1],F[v][0]-F[v][1]);//巧妙之处在这里,这样就可以保证除了选出的F[v][0]-F[v][1]最小的v是从F[v][0]得到
}
}
F[u][1]+=F[u][2];//还有这里,最后加上所有的F[v][1]之和
return;
}

POJ 3398 Perfect Service(树型动态规划,最小支配集)的更多相关文章

  1. POJ 3398 Perfect Service --最小支配集

    题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...

  2. POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心)-动态规划做法

    POJ 3659 Cell Phone Network / HUST 1036 Cell Phone Network(最小支配集,树型动态规划,贪心) Description Farmer John ...

  3. POJ 2152 fire / SCU 2977 fire(树型动态规划)

    POJ 2152 fire / SCU 2977 fire(树型动态规划) Description Country Z has N cities, which are numbered from 1 ...

  4. POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 1220 Party at Hali-Bula(树型动态规划)

    POJ 3342 Party at Hali-Bula / HDU 2412 Party at Hali-Bula / UVAlive 3794 Party at Hali-Bula / UVA 12 ...

  5. POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划)

    POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划) Descri ...

  6. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  7. 树型动态规划(树形dp)

    树型动态规划就是在“树”的数据结构上的动态规划,树型动态规划是建立在树上的,所以有二个方向: 1.根—>叶:这种题目基本上碰不到 2.叶->根:根的子节点传递有用的信息给根,完后根得出最优 ...

  8. CJOJ 1010【NOIP2003】加分二叉树 / Luogu 1040 加分二叉树(树型动态规划)

    CJOJ 1010[NOIP2003]加分二叉树 / Luogu 1040 加分二叉树(树型动态规划) Description 设 一个 n 个节点的二叉树 tree 的中序遍历为( 1,2,3,-, ...

  9. CJOJ 2171 火车站开饭店(树型动态规划)

    CJOJ 2171 火车站开饭店(树型动态规划) Description 政府邀请了你在火车站开饭店,但不允许同时在两个相连的火车站开.任意两个火车站有且只有一条路径,每个火车站最多有 50 个和它相 ...

随机推荐

  1. Lock(一)认识v$LOCK

    v$lock列出了数据库当前拥有的锁及未完成的锁请求. Column Description ADDR 被锁对象的地址 KADDR 锁的地址 SID session id(这里特指正在锁定对象或请求去 ...

  2. JS中判断数组的方法

    JavaScript中检测对象的方法 1.typeof操作符 这种方法对于一些常用的类型来说那算是毫无压力,比如Function.String.Number.Undefined等,但是要是检测Arra ...

  3. 全景技术大揭秘,市场核心早洞悉——VR全景加盟

    未来已来,未来已见.2017是3D全景创业的天时,全景行业逐步走向成熟.全景智慧城市专注vr全景6年,技术国内遥遥领先.全景智慧城市市场总监常诚,透漏3D全景技术和市场的核心. 拍摄全景必备的设备:单 ...

  4. 全景智慧城市——VR全景,开启VR营销新时代

    全景是一种新兴的富媒体技术. 与视频.声音.图片等传统主流媒体最大的区别是"可操作,可交互". 全景给人以三维立体感觉的实景360°全方位图像,此图像最大的三个特点: 全方位:展示 ...

  5. WEB前端:浏览器(IE+Chrome+Firefox)常见兼容问题处理--01

    兼容问题目录 1.IE6下怪异盒模型 2.IE6下最小高度问题 3.IE6下不支持1px的点线 4.IE6下内容会把父级的高度撑开 5.IE6下只支持给a标签添加伪类 6.IE67下不支持给块标签加d ...

  6. Caffe代码分析--crop_layer.cu

    因为要修改Caffe crop layer GPU部分的代码,现将自己对这部分GPU代码的理解总结一下,请大家多多指教! crop layer完成的功能(以matlab的方式表示):A(N,C,H,W ...

  7. Java Web入门学习(四)Eclipse与Maven、Tomcat整合配置

    Java Web学习(四)Eclipse与Maven整合配置 一.准备工作 1.Tomcat 8.5.15 2.Maven3.5 3.Eclipse Neon.3 Release (4.6.3) 二. ...

  8. 奇妙的 CSS shapes(CSS图形)

    CSS 发展到今天已经越来越强大了.其语法的日新月异,让很多以前完成不了的事情,现在可以非常轻松的做到.今天就向大家介绍几个比较新的强大的 CSS 功能: clip-path shape-outsid ...

  9. springmvc返回值为void

    /** * 移动端退出登录 * @param req */ @RequestMapping(value="/mobileUserLogout") @ResponseBody pub ...

  10. 再来写一个随机数解决方案,对Random再来一次封装

    本文提供对Random的封装,简化并扩展了其功能 获取随机数,确保同时调用不会重复 //new Random().Next(5); RandomTask.Next(); 从一个列表中,随机获取其中某个 ...