机器学习算法及代码实现–K邻近算法

1、K邻近算法

将标注好类别的训练样本映射到X(选取的特征数)维的坐标系之中,同样将测试样本映射到X维的坐标系之中,选取距离该测试样本欧氏距离(两点间距离公式)最近的k个训练样本,其中哪个训练样本类别占比最大,我们就认为它是该测试样本所属的类别。

2、算法步骤:

 1)为了判断未知实例的类别,以所有已知类别的实例作为参照
2)选择参数K
3)计算未知实例与所有已知实例的距离
4)选择最近K个已知实例
5)根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别

3、距离

Euclidean Distance 定义
其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)

其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)

4、例子


将其映射到2维空间

求距G点最近的k点中哪一类点最多,就可以预测G点类型。

5、算法优缺点:

优点
1)简单
2)易于理解
3)容易实现
4)通过对K的选择可具备丢噪音数据的健壮性

缺点

      1)需要大量空间储存所有已知实例
2)算法复杂度高(需要比较所有已知实例与要分类的实例)
3) 当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本

6、 改进版本

  考虑距离,根据距离加上权重
比如: 1/d (d: 距离)

代码

# -*- coding: utf-8 -*-
from sklearn import neighbors
from sklearn import datasets
# 调用knn分类器
knn = neighbors.KNeighborsClassifier()
# 导入数据集
iris = datasets.load_iris() print iris # 训练
knn.fit(iris.data, iris.target) # 预测
predictedLabel = knn.predict([[0.1, 0.2, 0.3, 0.4]])
print 'predictedLabel:'
print predictedLabel

机器学习算法及代码实现–K邻近算法的更多相关文章

  1. 《机器学习实战》学习笔记一K邻近算法

     一. K邻近算法思想:存在一个样本数据集合,称为训练样本集,并且每个数据都存在标签,即我们知道样本集中每一数据(这里的数据是一组数据,可以是n维向量)与所属分类的对应关系.输入没有标签的新数据后,将 ...

  2. <机器学习实战>读书笔记--k邻近算法KNN

    k邻近算法的伪代码: 对未知类别属性的数据集中的每个点一次执行以下操作: (1)计算已知类别数据集中的点与当前点之间的距离: (2)按照距离递增次序排列 (3)选取与当前点距离最小的k个点 (4)确定 ...

  3. [机器学习实战] k邻近算法

    1. k邻近算法原理: 存在一个样本数据集,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对 ...

  4. Python实现kNN(k邻近算法)

    Python实现kNN(k邻近算法) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>op ...

  5. 监督学习——K邻近算法及数字识别实践

    1. KNN 算法 K-近邻(k-Nearest Neighbor,KNN)是分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似( ...

  6. k邻近算法(KNN)实例

    一 k近邻算法原理 k近邻算法是一种基本分类和回归方法. 原理:K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实 ...

  7. kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)

    一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...

  8. 数据挖掘算法(一)--K近邻算法 (KNN)

    数据挖掘算法学习笔记汇总 数据挖掘算法(一)–K近邻算法 (KNN) 数据挖掘算法(二)–决策树 数据挖掘算法(三)–logistic回归 算法简介 KNN算法的训练样本是多维特征空间向量,其中每个训 ...

  9. 2 kNN-K-Nearest Neighbors algorithm k邻近算法(一)

    给定训练数据样本和标签,对于某测试的一个样本数据,选择距离其最近的k个训练样本,这k个训练样本中所属类别最多的类即为该测试样本的预测标签.简称kNN.通常k是不大于20的整数,这里的距离一般是欧式距离 ...

随机推荐

  1. Spark-BlockManager

    简单说明 BlockManager是管理整个Spark运行时数据的读写,包含数据存储本身,在数据存储的基础之上进行数据读写.由于Spark是分布式的,所有BlockManager也是分布式的,Bloc ...

  2. 支持向量机SVM知识梳理和在sklearn库中的应用

    SVM发展史 线性SVM=线性分类器+最大间隔 间隔(margin):边界的活动范围.The margin of a linear classifier is defined as the width ...

  3. zabbix 微信告警机制

    微信告警首先得注册一个企业微信,然后才能实现微信告警.自行百度 微信: 添加一个用户到上面创建的部门里面 创建完成记住 AgentID  和 Secret 下一步:记住企业 ID 1)编辑zabbix ...

  4. BareTail 观看文件增加的工具

  5. 企业级 Harbor 镜像仓库

    Harbor是由VMWare公司开源的容器镜像仓库.事实上,Harbor是在Docker Registry上进行了相应 的企业级扩展,从而获得了更加广泛的应用,这些新的企业级特性包括:管理用户界面,基 ...

  6. Spring5参考指南: SpEL

    文章目录 Bean定义中的使用 求值 支持的功能 函数 Bean引用 If-Then-Else Elvis Safe Navigation 运算符 集合选择 集合投影 表达式模板化 SpEL的全称叫做 ...

  7. Nginx访问日志.Nginx日志切割

    11月27日任务 12.10 Nginx访问日志12.11 Nginx日志切割12.12 静态文件不记录日志和过期时间 1.Nginx访问日志 示例一: 日志格式 vim /usr/local/ngi ...

  8. P4168 蒲公英

    神仙分块,把减写成加调了半小时.. 不过这题也启示我们其实有的分块题要把多个块的信息拿到一起维护 以前做的都是每个块的信息单独维护 写的分块题还不太多,同时维护一个块的左右边界好像有点冗余,不过这样代 ...

  9. zabbix 数据库分区表配置

    下载 pwd /usr/local/zabbix/share/zabbix/externalscriptswget http://cactifans.hi-www.com/zabbix/partiti ...

  10. ZABBIX自动发现Redis端口并监控

    由于一台服务器开启许多Redis实例,如果一台一台的监控太耗费时间,也非常容器出错.这种费力不讨好的事情我们是坚决杜绝的,幸好ZABBIX有自动发现功能,今天我们就来用该功能来监控我们的Redis实例 ...