Broadcasting可以理解成把维度分成大维度和小维度,小维度较为具体,大维度更加抽象。也就是小维度针对某个示例,然后让这个示例通用语大维度。

import tensorflow as tf

x = tf.random.normal([4,32,32,3])
x.shape
(x+tf.random.normal([3])).shape
(x+tf.random.normal([32,32,1])).shape
(x+tf.random.normal([4,1,1,1])).shape
try:
(x+tf.random.normal([1,4,1,1])).shape
except Exception as e:
print(e)
(x+tf.random.normal([4,1,1,1])).shape
b = tf.broadcast_to(tf.random.normal([4,1,1,1]),[4,32,32,3])
b.shape
a = tf.ones([3,4])
a.shape
a1 = tf.broadcast_to(a,[2,3,4])
a1.shape
a2 = tf.expand_dims(a,axis=0)  # 0前插入一维
a2.shape
a2 = tf.tile(a2,[2,1,1])  # 复制一维2次,复制二、三维1次
a2.shape

吴裕雄--天生自然TensorFlow2教程:Broadcasting的更多相关文章

  1. 吴裕雄--天生自然TensorFlow2教程:手写数字问题实战

    import tensorflow as tf from tensorflow import keras from keras import Sequential,datasets, layers, ...

  2. 吴裕雄--天生自然TensorFlow2教程:函数优化实战

    import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def himme ...

  3. 吴裕雄--天生自然TensorFlow2教程:反向传播算法

  4. 吴裕雄--天生自然TensorFlow2教程:链式法则

    import tensorflow as tf x = tf.constant(1.) w1 = tf.constant(2.) b1 = tf.constant(1.) w2 = tf.consta ...

  5. 吴裕雄--天生自然TensorFlow2教程:多输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  6. 吴裕雄--天生自然TensorFlow2教程:单输出感知机及其梯度

    import tensorflow as tf x = tf.random.normal([1, 3]) w = tf.ones([3, 1]) b = tf.ones([1]) y = tf.con ...

  7. 吴裕雄--天生自然TensorFlow2教程:损失函数及其梯度

    import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) ...

  8. 吴裕雄--天生自然TensorFlow2教程:激活函数及其梯度

    import tensorflow as tf a = tf.linspace(-10., 10., 10) a with tf.GradientTape() as tape: tape.watch( ...

  9. 吴裕雄--天生自然TensorFlow2教程:梯度下降简介

    import tensorflow as tf w = tf.constant(1.) x = tf.constant(2.) y = x * w with tf.GradientTape() as ...

随机推荐

  1. 八数码问题 IDA*搜索

    #include<iostream> #include<string> #include<cmath> #include<cstring> #inclu ...

  2. Java 文件

    章节 Java 基础 Java 简介 Java 环境搭建 Java 基本语法 Java 注释 Java 变量 Java 数据类型 Java 字符串 Java 类型转换 Java 运算符 Java 字符 ...

  3. Docker入门以及漏洞环境搭建(10.23 第二十五天)

    Docker:开源的应用程序容器引擎,使用Go语言.借助于docker打包的应用程序,将这些应用程序 包含在容器里面,在容器中实现虚拟化,容器使用的是沙箱机制,相互独立,占用资源非常少. Docker ...

  4. 51nod 1437:迈克步 单调栈基础题

    1437 迈克步 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  取消关注 有n只熊.他们站成一排队伍,从左到右依次1到 ...

  5. 怎么更改Rstudio中的默认目录

    方法一. 每次启动Rstudio之后,执行代码 setwd("F:/R/R_data") 默认目录就会修改为双引号内的位置路径. 方法二. 对Rstudio进行设置一次即可. ①点 ...

  6. 云时代架构阅读笔记五——Java内存模型详解(一)

    什么是Java内存模型 Java虚拟机规范中试图定义一种Java内存模型(Java Memory Model,JMM)来屏蔽掉各种硬件和操作系统的访问差异,以实现让Java程序在各种平台下都能达到一致 ...

  7. JavaScript中的面向对象及有关应用

    面向对象(OOP:Object Oriented Programming)  面向对象的概念 面向对象是一种程序设计思想,将数据和处理数据的程序封装到对象中. 特性:抽象.继承.封装.多态. 优点:提 ...

  8. (转)深入理解JVM—JVM内存模型

    原文地址:http://www.cnblogs.com/dingyingsi/p/3760447.html 我们知道,计算机CPU和内存的交互是最频繁的,内存是我们的高速缓存区,用户磁盘和CPU的交互 ...

  9. sendgrid 批量发送邮件,收件栏只显示当前用户的方案

    需求:批量发送邮件,用户可能看到其他用户的邮箱地址,之前用BBC发送,但问题是接收地址是同一个. 官方解决方案:https://sendgrid.kke.co.jp/docs/Tutorials/A_ ...

  10. ZOJ 3795 Grouping 强连通分量-tarjan

    一开始我还天真的一遍DFS求出最长链以为就可以了 不过发现存在有向环,即强连通分量SCC,有向环里的每个点都是可比的,都要分别给个集合才行,最后应该把这些强连通分量缩成一个点,最后保证图里是 有向无环 ...