青蛙的约会 (ax+by=c求最小整数解)【拓展欧几里得】
青蛙的约会(点击跳转)
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
代码:
(具体讲解所使用的方法可见:链接(点击) )
#include<stdio.h>
typedef long long int LL;
LL GCD; //代表最大公约数gcd(a,b)
LL exgcd(LL a,LL b,LL &x,LL &y) //套用拓展欧几里得公式
{
if(!b){
x=1;
y=0;
return a;
}
GCD=exgcd(b,a%b,y,x);
y-=a/b*x;
return GCD;
}
int main()
{
LL x1,y1,m,n,l,b,c,x,y,t;
scanf("%lld%lld%lld%lld%lld",&x1,&y1,&m,&n,&l);
GCD=exgcd(m-n,l,x,y);
if((y1-x1)%GCD){ //判断是否有解
printf("Impossible\n");
}
else{
x*=((y1-x1)/GCD); //求解ax+by=c特解的方法
t=l/GCD;
if(t<0){
t=-t;
}
x=(x%t+t)%t; //求出最小整数解
printf("%lld\n",x);
}
return 0;
}
青蛙的约会 (ax+by=c求最小整数解)【拓展欧几里得】的更多相关文章
- POJ1061-青蛙的约会---扩展欧几里德算法求最小整数解
扩展欧几里得算法模板 #include <cstdio> #include <cstring> #define ll long long using namespace std ...
- 【BZOJ1477】青蛙的约会(拓展欧几里得)
[BZOJ1477]青蛙的约会(拓展欧几里得) 题面 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为 ...
- poj 1061 青蛙的约会+拓展欧几里得+题解
青蛙的约会+拓展欧几里得+题解 纵有疾风起 题意 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出 ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- POJ1061 青蛙的约会-拓展欧几里得
Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...
- POJ.1061 青蛙的约会 (拓展欧几里得)
POJ.1061 青蛙的约会 (拓展欧几里得) 题意分析 我们设两只小青蛙每只都跳了X次,由于他们相遇,可以得出他们同余,则有: 代码总览 #include <iostream> #inc ...
- Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】
根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$ 和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...
- gcd模板(欧几里得与扩展欧几里得、拓展欧几里得求逆元)
gcd(欧几里得算法辗转相除法): gcd ( a , b )= d : 即 d = gcd ( a , b ) = gcd ( b , a mod b ):以此式进行递归即可. 之前一直愚蠢地以为辗 ...
- Modular Inverse (拓展欧几里得求逆元)
The modular modular multiplicative inverse of an integer a modulo m is an integer xsuch that a-1≡x ( ...
随机推荐
- 洛谷P2754 [CTSC1999]家园
题目链接:https://www.luogu.org/problemnew/show/P2754 知识点: 最大流 解题思路: 先用 \(DFS\) 判断是否无解. 从时刻 \(0\) 开始枚举答案, ...
- Redis学习笔记(十五)Sentinel(哨兵)(中)
上一篇 我们模拟了单机器下哨兵模式的搭建,那么接下来我们看下哨兵模式的实现与工作. 为什么又分成两篇呢?因为篇幅太长(偷懒),再一个这篇主要说的是Sentinel的初始化以及信息交换,下一篇着重说下状 ...
- 【java】关键字volatile
volatile 1. 含义: volatile是JVM提供的轻量级的同步机制,具有三个特点:保证可见性.不保证原子性.禁止指令重排. 1.1 保证可见性 一个线程修改了共享变量并写回主内存,其他线程 ...
- Apache Hudi在医疗大数据中的应用
本篇文章主要介绍Hudi在医疗大数据中的应用,主要分为5个部分进行介绍:1. 建设背景,2. 为什么选择Hudi,3. Hudi数据同步,4. 存储类型选择及查询优化,5. 未来发展与思考. 1. 建 ...
- DDD之1微服务设计为什么选择DDD
背景 名词解释 如果你的团队目前正是构建微服务架构风格的软件系统,问自己两个问题? 软件架构演进 软件架构大致经历了从单机架构,集中式架构,分布式微服架构,程序的层次图如下所示. 单机架构 特点如下: ...
- C# 委托浅析
C# 中的委托(Delegate)类似于 C 或 C++ 中函数的指针.委托(Delegate) 是存有对某个方法的引用的一种引用类型变量.引用可在运行时被改变. 委托(Delegate)特别用于实现 ...
- Docker: GUI 应用,Ubuntu 上如何运行呢?
操作系统: Ubuntu 18.04 运行镜像: continuumio/anaconda3, based on debian Step 1) 安装 Docker # update the apt p ...
- CTR学习笔记&代码实现6-深度ctr模型 后浪 xDeepFM/FiBiNET
xDeepFM用改良的DCN替代了DeepFM的FM部分来学习组合特征信息,而FiBiNET则是应用SENET加入了特征权重比NFM,AFM更进了一步.在看两个model前建议对DeepFM, Dee ...
- Rocket - diplomacy - DUEB参数模型分析
https://mp.weixin.qq.com/s/533bJxcPRgO4W2gf_OEhEw 分析DUEB参数模型中各种参数类型的可能性. 1. 节点类型 根据参数的传播方向,可 ...
- Chisel3 - model - connect
https://mp.weixin.qq.com/s/w8NqM3GVlF0NydpsB65KPg 介绍创建模块顺序逻辑的connect命令. 0. 这里先简单对 "=" ...