Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition
URL:http://ydwen.github.io/papers/WenECCV16.pdf
这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center Loss联合来监督训练,在扩大类间差异的同时缩写类内差异,提升模型的鲁棒性。

为了直观的说明softmax loss的影响,作者在对LeNet做了简单修改,把最后一个隐藏层输出维度改为2,然后将特征在二维平面可视化,下面两张图分别是MNIDST的train集和test集,可以发现类间差异比较明显,但是类内的差异也比较明显。
为了减小类内差异论文提出了Center Loss:大专栏 Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition-Deep-Face-Recognition-image004.png" alt=""/>
Cyi就是类的中心点特征,Cyi的计算方法就是yi类样本特征的均值,为了让center loss在神经网络训练过程中切实可行,Cyi的计算是对于每一个mini-batch而言,因此结合Softmax Loss,整个网络的损失函数就变成了, λ用来平衡这两个Loss:
用同样的网路结构只是将Softmax Loss替换成Center Loss作者在MNIST数据集上做了同样的实验,对于不同的λ值得到了如下可视化结果可以发现Center Loss还是比较明显的减小了类内差异同时类间差异也比较突出。
在公开数据集上的表现:
Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition的更多相关文章
- [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...
- A Discriminative Feature Learning Approach for Deep Face Recognition
url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判 ...
- 损失函数Center Loss 代码解析
center loss来自ECCV2016的一篇论文:A Discriminative Feature Learning Approach for Deep Face Recognition. 论文链 ...
- 论文笔记之:Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach
Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach 2017.11.28 Introductio ...
- 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...
- Joint Detection and Identification Feature Learning for Person Search
Joint Detection and Identification Feature Learning for Person Search 2018-06-02 本文的贡献主要体现在: 提出一种联合的 ...
- 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...
- 《3-D Deep Learning Approach for Remote Sensing Image Classification》论文笔记
论文题目<3-D Deep Learning Approach for Remote Sensing Image Classification> 论文作者:Amina Ben Hamida ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
随机推荐
- C++类的访问控制关键字
public:修饰的成员变量和函数,可以在类的内部和类的外部被访问. private:修饰的成员变量和函数,只能在类的内部被访问,不能在类的外部被访问. protected:修饰的成员变量和函数,只能 ...
- springboot学习笔记:8. springboot+druid+mysql+mybatis+通用mapper+pagehelper+mybatis-generator+freemarker+layui
前言: 开发环境:IDEA+jdk1.8+windows10 目标:使用springboot整合druid数据源+mysql+mybatis+通用mapper插件+pagehelper插件+mybat ...
- 关于nginx配置的一个报错connect() to unix:/tmp/php-cgi.sock failed (2: No such file or directory)
针对配置php的情况: linux服务器一般提示这个 connect() to unix:/tmp/php-cgi.sock failed (2: No such file or directory) ...
- Proe5.0导出PDF至配置文件的相关方法,VC++
定义文件bcsMessage.txt PLM PLM PLM # login login 测试 # Active messagebox menu Active messagebox menu 激活菜单 ...
- 第04项目:淘淘商城(SpringMVC+Spring+Mybatis)【第九天】(商品详情页面实现)
https://pan.baidu.com/s/1bptYGAb#list/path=%2F&parentPath=%2Fsharelink389619878-229862621083040 ...
- python学习——函数返回值及递归
返回值 return语句是从python 函数返回一个值,在讲到定义函数的时候有讲过,每个函数都要有一个返回值.Python中的return语句有什么作用,今天小编就依目前所了解的讲解一下.pytho ...
- day04-函数,装饰器初成
面试的时候,经常被问过装饰器,所以掌握好装饰器非常重要. 一.装饰器形成的过程:1.最简单的装饰器.2.被装饰的函数有返回值.3.被装饰的函数有一个参数.4.被装饰的函数有多个位置参数.5.被装饰的函 ...
- Redis为什么这么快以及持久化机制
1.首先我们谈一下为什么Redis快: 一. Redis是纯内存数据库,一般都是简单的存取操作,线程占用的时间很多,时间的花费主要集中在IO上,所以读取速度快. 二. 再说一下IO,Redis使用的是 ...
- SQL数据库的查询方法
简单查询: 一.投影 select * from 表名 select 列1,列2... from 表名 select distinct 列名 from 表名 二.筛选 select top 数字 列| ...
- [LC] 71. Simplify Path
Given an absolute path for a file (Unix-style), simplify it. Or in other words, convert it to the ca ...