Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition
URL:http://ydwen.github.io/papers/WenECCV16.pdf
这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center Loss联合来监督训练,在扩大类间差异的同时缩写类内差异,提升模型的鲁棒性。

为了直观的说明softmax loss的影响,作者在对LeNet做了简单修改,把最后一个隐藏层输出维度改为2,然后将特征在二维平面可视化,下面两张图分别是MNIDST的train集和test集,可以发现类间差异比较明显,但是类内的差异也比较明显。
为了减小类内差异论文提出了Center Loss:大专栏 Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition-Deep-Face-Recognition-image004.png" alt=""/>
Cyi就是类的中心点特征,Cyi的计算方法就是yi类样本特征的均值,为了让center loss在神经网络训练过程中切实可行,Cyi的计算是对于每一个mini-batch而言,因此结合Softmax Loss,整个网络的损失函数就变成了, λ用来平衡这两个Loss:
用同样的网路结构只是将Softmax Loss替换成Center Loss作者在MNIST数据集上做了同样的实验,对于不同的λ值得到了如下可视化结果可以发现Center Loss还是比较明显的减小了类内差异同时类间差异也比较突出。
在公开数据集上的表现:
Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition的更多相关文章
- [论文阅读] A Discriminative Feature Learning Approach for Deep Face Recognition (Center Loss)
原文: A Discriminative Feature Learning Approach for Deep Face Recognition 用于人脸识别的center loss. 1)同时学习每 ...
- A Discriminative Feature Learning Approach for Deep Face Recognition
url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判 ...
- 损失函数Center Loss 代码解析
center loss来自ECCV2016的一篇论文:A Discriminative Feature Learning Approach for Deep Face Recognition. 论文链 ...
- 论文笔记之:Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach
Heterogeneous Face Attribute Estimation: A Deep Multi-Task Learning Approach 2017.11.28 Introductio ...
- 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...
- Joint Detection and Identification Feature Learning for Person Search
Joint Detection and Identification Feature Learning for Person Search 2018-06-02 本文的贡献主要体现在: 提出一种联合的 ...
- 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach
Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...
- 《3-D Deep Learning Approach for Remote Sensing Image Classification》论文笔记
论文题目<3-D Deep Learning Approach for Remote Sensing Image Classification> 论文作者:Amina Ben Hamida ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
随机推荐
- sqlserver 数据库分组后取第一条数据
分享一个朋友的人工智能教程.零基础!通俗易懂!风趣幽默!大家可以看看是否对自己有帮助,点击查看教程. 比如查询用户某一天最后一笔交易后的账户余额 SELECT *( SELECT *, row_num ...
- JS控制 input 输入字符限制全搜集
ENTER键可以让光标移到下一个输入框 <input onkeydown="if(event.keyCode==13)event.keyCode=9" > 只能是中文 ...
- LibraryBuilder——从元器件datasheet到Library
LibraryBuilder是Cadence推出的元件库管理工具,可以从PDF自动创建器件的原理图符号及PCB封装. 软件可以从“吴川斌的博客”下载到. 这里大致记录一下创建元件库的过程,以Beagl ...
- 前端之BOM与DOM-JQuery
一.前端基础之BOM和DOM: 1: JavaScript分为 ECMAScript,DOM,BOM BOM:指的是浏览器对象模型,它使JavaScript有能力与浏览器进行“对话” DOM:是指文档 ...
- [tire+最短路]Bless You Autocorrect!
[tire+最短路]Bless You Autocorrect! Typing on phones can be tedious. It is easy to make typing mistakes ...
- 【lca+输入】Attack on Alpha-Zet
Attack on Alpha-Zet 题目描述 Space pirate Captain Krys has recently acquired a map of the artificial and ...
- 六、linux-mysql的mysql字符集问题
一.什么是字符集? 字符集是用来定义mysql数据字符串的存储方式,而校对规则则是定义比较字符串的方式.mysql字符集包含字符集和校对规则. 二.字符集的选择 常见的字符集中,中英混合环境建议用UT ...
- Jmeter连接Mysql出现Cannot create PoolableConnectionFactory (Could not create connection to database server.)错误
0 环境 系统环境:win10 1 正文 一般是数据库的驱动包版本不匹配(我是直接放在jmeter/lib下的) 当然有时候需要添加?useUnicode=true&characterEnco ...
- B. Split a Number(字符串加法)
Dima worked all day and wrote down on a long paper strip his favorite number nn consisting of ll dig ...
- RHEL安装神器EPEL
什么是EPEL? EPEL的全称叫 Extra Packages for Enterprise Linux .EPEL是由 Fedora 社区打造,为 RHEL 及衍生发行版如 CentOS.Scie ...