1188: [HNOI2007]分裂游戏

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 733  Solved: 451
[Submit][Status][Discuss]

Description


聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有
p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k
且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k)
。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆!
两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考
了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜
策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子
中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n
< = 21,p[i] < = 10000

Input

输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。

Output


于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要
求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不
同的取法。

Sample Input

2
4
1 0 1 5000
3
0 0 1

Sample Output

0 2 3
1
-1 -1 -1
0

HINT

Source

【思路】

SG函数,博弈

看作是一排n个位置,每个位置有一个或零个石子,因为偶数个石子的sg抑或后为0,所以把p[i]为奇数的看作是一个石子,偶数的看作是零个石子。

   考虑简化后的题目,一颗石子在i会转移到一颗石子在j一颗石子在k的子状态,所以i局面的后继即为jk局面,此时可以记忆化搜索sg值。

真神奇 < _ <

【代码】

 #include<cstdio>
#include<cstring>
using namespace std; const int N = ; int n,a[N],sg[N],ans,tot; int dfs(int x) {
if(sg[x]!=-) return sg[x];
if(x==n) return sg[x]=;
bool vis[];
memset(vis,,sizeof(vis));
for(int i=x+;i<=n;i++)
for(int j=i;j<=n;j++)
vis[dfs(i)^dfs(j)]=;
for(int i=;;i++)
if(!vis[i]) return sg[x]=i;
} int main() {
int T;
scanf("%d",&T);
while(T--) {
memset(sg,-,sizeof(sg));
ans=tot=;
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++)
if(a[i]&) ans^=dfs(i);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
for(int k=j;k<=n;k++) {
if((ans^dfs(i)^dfs(j)^dfs(k))) continue;
++tot;
if(tot==) printf("%d %d %d\n",i-,j-,k-);
}
if(!tot) printf("-1 -1 -1\n");
printf("%d\n",tot);
}
return ;
}

bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)的更多相关文章

  1. bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理

    [HNOI2007]分裂游戏 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1394  Solved: 847[Submit][Status][Dis ...

  2. bzoj 1188 : [HNOI2007]分裂游戏 sg函数

    题目链接 给n个位置, 每个位置有一个小球. 现在两个人进行操作, 每次操作可以选择一个位置i, 拿走一个小球.然后在位置j, k(i<j<=k)处放置一个小球. 问你先进行什么操作会先手 ...

  3. [BZOJ 1188] [HNOI2007] 分裂游戏 【博弈论|SG函数】

    题目链接:BZOJ - 1188 题目分析 我们把每一颗石子看做一个单个的游戏,它的 SG 值取决于它的位置. 对于一颗在 i 位置的石子,根据游戏规则,它的后继状态就是枚举符合条件的 j, k.然后 ...

  4. BZOJ 1188 / Luogu P3185 [HNOI2007]分裂游戏 (SG函数)

    题意 有n个格子,标号为0 ~ n-1,每个格子上有若干石子,每次操作可以选一个0 ~ n-2的格子上的一颗石子,分裂为两颗,然后任意放在后面的两个格子内,这两个格子可以相同.求使先手必胜的第一步的方 ...

  5. BZOJ 1188: [HNOI2007]分裂游戏(multi-nim)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1386  Solved: 840[Submit][Status][Discuss] Descripti ...

  6. BZOJ 1188 [HNOI2007]分裂游戏

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1188 学习SG函数的过程中,我先看了一篇叫做 <2008-贾志豪-组合数学略述... ...

  7. BZOJ1188 [HNOI2007]分裂游戏(SG函数)

    传送门 拿到这道题就知道是典型的博弈论,但是却不知道怎么设计它的SG函数.看了解析一类组合游戏这篇论文之后才知道这道题应该怎么做. 这道题需要奇特的模型转换.即把每一个石子当做一堆石子,且原来在第i堆 ...

  8. BZOJ P1188 HNOI2007 分裂游戏——solution

    题目描述: (<--这个) 组合游戏,——把每个石头看做一个游戏, Multi_game——消去i上的石子后,,k上的游戏又多了一个: 于是就套用multi_game的模型即可 求解SG函数时, ...

  9. BZOJ 1874 取石子游戏 - SG函数

    Description $N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜 $A_i <= 1000$,$ B_i <= 10$ Solution 由于数据很小, ...

随机推荐

  1. python基础知识十一

    图形软件 使用Python的GUI库——你需要使用这些库来用Python语言创建你自己的图形程序.使用GUI库和它们的Python绑定,你可以创建你自己的IrfanView.Kuickshow软件或者 ...

  2. iOS,长按图片保存实现方法,轻松搞定!

    1.添加手势识别: UITapGestureRecognizer *tap = [[UITapGestureRecognizer alloc]initWithTarget:self action:@s ...

  3. 邓白氏编码(duns number)申请入口的路径-苹果开发者申请必

    http://tieba.baidu.com/p/3861287522 这个网址有详细的介绍

  4. 各大浏览器内核(Rendering Engine)

    记得刚开始写网页的时候,听童鞋们说各大浏览器的内核,也是懵懵懂懂的,知一不知其二,今天特地查一下: 内核只是一个通俗的说法,其英文名称为“Layout engine”,翻译过来就是“排版引擎”,也被称 ...

  5. double类型字符串转换成一个纯数字字符串和一个小数点位数的c++代码

    今天工作中遇到一个要不一个double型的字符串转换成一个纯字数字符串和一个标志这个数字字符串的小数点有几位的int类型 例如:“23.123”--->“23123” + 3   比较简单.就是 ...

  6. WebApi(二)-重新封装返回结果

    先创建要返回的结果类型: /// <summary> /// 返回类型 /// </summary> public class ApiResultModel { private ...

  7. 调用相册怎么设置剪裁-b

    //创建一个相册控制器 UIImagePickerController *pc = [[UIImagePickerController alloc] init]; //图片来源// UIImagePi ...

  8. React/React Native 的ES5 ES6写法对照表-b

    很多React/React Native的初学者都被ES6的问题迷惑:各路大神都建议我们直接学习ES6的语法(class Foo extends React.Component),然而网上搜到的很多教 ...

  9. [原创]dm642_HPI调通并boot成功

    一直在折腾前段时间画好的dm642+lpc4357板子,说明下这个板子的结构: 主芯片为DM642,这个片子很老了,但因为对这个片子熟悉,别折腾 没有给DM642加FLASH,配了一片LPC4357, ...

  10. 静态代理VS动态代理

    代理Proxy: Proxy代理模式是一种结构型设计模式,主要解决的问题是:在直接访问对象时带来的问题 代理是一种常用的设计模式,其目的就是为其他对象提供一个代理以控制对某个对象的访问.代理类负责为委 ...