Luogu [P3951] 小凯的疑惑
题目详见:【P3951】小凯的疑惑
首先说明:此题为一道提高组的题。但其实代码并没有提高组的水平。主要考的是我们的推断能力,以及看到题后的分析能力。
分析如下:
证明当k>ab-a-b时,小凯可以准确支付这个物品。
显然,可以列出一个不定方程ma+nb=k,(m n,为未知数)由于m,n是金币个数,所以m>-1,n>-1,
这个不定方程的通解为m=m0+bt,n=n0-at,(仅仅为写法的一种,不过这样写最方便,m0,n0为方程的一组解),
m0+bt>-1,n0-at>-1,化简后有-(m0+1)/b<t<(n0+1)/a,
显然(n0+1)/a-(-(m0+1)/b)=(n0+1)/a+(m0+1)/b=(bn0+b+a+am0)/ab,
又因为bn0+am0=k.所以原式等于(k+a+b)/ab,显然k+a+b>ab,所以原式大于1,所以区间(-(m0+1)/b,(n0+1)/a,)中必有一个整数,t一定存在,所以命题成立。
又可证明当k=ab-a-b时小凯无法支付(大家可以去参考题解,我就不啰嗦了),
所以ab-a-b就是不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。 ——摘自luogu
#include<iostream>
using namespace std;
int main()
{
long long a,b;
cin>>a>>b;
cout<<a*b-a-b;
return ;
}
Luogu [P3951] 小凯的疑惑的更多相关文章
- 2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...
- P3951 小凯的疑惑
P3951 小凯的疑惑 题解 题意也就是求解不能用 ax+by 表示的最大数 ans(a,b,x,y,都是正整数) 给定 a ( =7 ) , b ( =3 ) 我们可以把数轴非负半轴上的数按照a的 ...
- 洛谷 P3951 小凯的疑惑 找规律
目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...
- 题解 P3951 小凯的疑惑
P3951 小凯的疑惑 数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq 分析 两数互质,且有无限个,想到 ...
- 2021.07.20 P3951 小凯的疑惑(最大公因数,未证)
2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代 ...
- luogu 3951 小凯的疑惑
noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...
- 洛谷 P3951 小凯的疑惑(数学)
传送门:Problem P3951 https://www.cnblogs.com/violet-acmer/p/9827010.html 参考资料: [1]:http://m.blog.sina.c ...
- 洛谷 P3951 小凯的疑惑
题目链接 一开始看到这题,我的内心是拒绝的. 以为是同余类bfs,一看数据1e9,发现只能允许O(1)的算法,数学还不太好,做不出来,其实应该打表找规律. 看到网上的题解,如果两个都必须拿,结果一定是 ...
- 洛谷P3951 小凯的疑惑 - 数学 /扩展欧几里得
传送门 题意:求出a和b不能通过线性组合(即n*a+m*b)得到的最大值: 思路:摘自洛谷: 不妨设 a<b 假设答案为 x 若 x≡m*a ( mod b )(1≤m≤b−1) (mod3)什 ...
随机推荐
- offsetLeft在各浏览器的值
上网找了好久没有找到一个offsetLeft在各浏览器的值,自己用了一晚上的时间在各浏览器测试出来的offsetLeft的值. <!DOCTYPE html> <html lang= ...
- ue4 renderTexture简单记录
示例内容中的renderTexture 抓取部分 1 新建一个TextureRenderTarget2D 2 抓图 新建actor,一个camera,下面挂一个SceneCaptureComponen ...
- 51nod1412(dp)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1412 代码: #include <bits/stdc+ ...
- XXy
XXy codevs1003 帮我看看 #include<iostream> #include<cstdio> using namespace std; ],map[][],n ...
- 领域驱动设计业务框架DMVP
DMVP,全称DDD-MVP,是基于领域驱动设计(DDD)搭建的业务框架,整体设计符合DDD领域模型的规范,业务上达成了领域模型和代码的一一映射,技术上达成了高内聚低耦合的架构设计,开发人员不需要关注 ...
- 黑马学习AJAX jQuery发送异步请求 $.ajax() $.post() $.get()是在调用方法而不是定义方法
- (转载)常用Git命令清单
我每天使用Git,但是很多命令记不住 一般来说,日常使用只要记住下图6个命令,就可以了.但是熟练使用,恐怕要记住60~100个命令 下面是我整理的常用Git命令清单. Workspace:工作区 In ...
- Hive进阶_Hive数据查询
简单查询和fetch task 简单查询: 简单查询的 fetch task 功能,从HDFS拉取,不用map reduce. 前两种配置,当前session有效.修改hive-site.xml永 ...
- eShopOnContainers(一)
微软微服务架构eShopOnContainers(一) 为了推广.Net Core,微软为我们提供了一个开源Demo-eShopOnContainers,这是一个使用Net Core框架开发的,跨平台 ...
- 使用docker save load 的时候的一个小问题
当你使用docker save image_id > aa.tar ; 然后再使用 docker load < aa.tar 时, 你会发现此时导入的镜像的repository和 tag ...