题目详见:【P3951】小凯的疑惑

首先说明:此题为一道提高组的题。但其实代码并没有提高组的水平。主要考的是我们的推断能力,以及看到题后的分析能力。

分析如下:

证明当k>ab-a-b时,小凯可以准确支付这个物品。

显然,可以列出一个不定方程ma+nb=k,(m n,为未知数)由于m,n是金币个数,所以m>-1,n>-1,

这个不定方程的通解为m=m0+bt,n=n0-at,(仅仅为写法的一种,不过这样写最方便,m0,n0为方程的一组解),

m0+bt>-1,n0-at>-1,化简后有-(m0+1)/b<t<(n0+1)/a,

显然(n0+1)/a-(-(m0+1)/b)=(n0+1)/a+(m0+1)/b=(bn0+b+a+am0)/ab,

又因为bn0+am0=k.所以原式等于(k+a+b)/ab,显然k+a+b>ab,所以原式大于1,所以区间(-(m0+1)/b,(n0+1)/a,)中必有一个整数,t一定存在,所以命题成立。

又可证明当k=ab-a-b时小凯无法支付(大家可以去参考题解,我就不啰嗦了),

所以ab-a-b就是不找零的情况下,小凯用手中的金币不能准确支付的最贵的物品的价值。 ——摘自luogu

#include<iostream>
using namespace std;
int main()
{
long long a,b;
cin>>a>>b;
cout<<a*b-a-b;
return ;
}

Luogu [P3951] 小凯的疑惑的更多相关文章

  1. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  2. P3951 小凯的疑惑

    P3951 小凯的疑惑 题解 题意也就是求解不能用 ax+by 表示的最大数 ans(a,b,x,y,都是正整数) 给定 a ( =7 ) ,  b ( =3 ) 我们可以把数轴非负半轴上的数按照a的 ...

  3. 洛谷 P3951 小凯的疑惑 找规律

    目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...

  4. 题解 P3951 小凯的疑惑

    P3951 小凯的疑惑 数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq 分析 两数互质,且有无限个,想到 ...

  5. 2021.07.20 P3951 小凯的疑惑(最大公因数,未证)

    2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代 ...

  6. luogu 3951 小凯的疑惑

    noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...

  7. 洛谷 P3951 小凯的疑惑(数学)

    传送门:Problem P3951 https://www.cnblogs.com/violet-acmer/p/9827010.html 参考资料: [1]:http://m.blog.sina.c ...

  8. 洛谷 P3951 小凯的疑惑

    题目链接 一开始看到这题,我的内心是拒绝的. 以为是同余类bfs,一看数据1e9,发现只能允许O(1)的算法,数学还不太好,做不出来,其实应该打表找规律. 看到网上的题解,如果两个都必须拿,结果一定是 ...

  9. 洛谷P3951 小凯的疑惑 - 数学 /扩展欧几里得

    传送门 题意:求出a和b不能通过线性组合(即n*a+m*b)得到的最大值: 思路:摘自洛谷: 不妨设 a<b 假设答案为 x 若 x≡m*a ( mod b )(1≤m≤b−1) (mod3)什 ...

随机推荐

  1. 3dmax tcb控制器

    https://wenku.baidu.com/video/course/v/3a0e059d884c4d0b03bf85441b87311b 7.48开始 tcb控制器比较适合产生平滑动画 张力Te ...

  2. anaconda3安装caffe

    使用anaconda3安装caffe踩坑无数次,放弃治疗,直接在~/.bashrc中删除anaconda的路径,备份一下等要用的时候再写上,用默认的python2.7系统环境安装 要使用人脸检测项目中 ...

  3. tyvj4868 天天和不可描述

    描述

  4. 2015 Noip提高组 Day2

    P2678 跳石头 [题目背景] 一年一度的“跳石头”比赛又要开始了! [题目描述] 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和 ...

  5. Codevs 1159 最大全0子矩阵

    1159 最大全0子矩阵  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 在一个0,1方阵中找出其中最大的全 ...

  6. Spfa算法模板

    输入点数n,边数m,起点终点边权 输出1号节点到所有点的最短路径长度 #include<iostream> #include<queue> #include<cstrin ...

  7. 关于c语言中的字符串的问题

      静态数组,动态数组,链表是c语言中处理存储数据最基本的三种方式. 1.静态数组,你先定好大小,直接赋值即可,不要超过定义的长度. 2.动态分配数组,在执行的时候,输入要分的内存大小,然后p=(vo ...

  8. IT兄弟连 JavaWeb教程 监听器2

    4  监听HttpSession域对象的创建和销毁 HttpSessionListener接口用于监听HttpSession对象的创建和销毁. 创建一个Session时,激发sessionCreate ...

  9. Windows服务器初始配置

    系统状态是否良好 检查ip地址.子网掩码等配置 防火墙是否关闭 是否有攻击,有多大的攻击,什么类型的攻击,攻击流量图 是否中病毒 1.改端口 (1)打开注册表 [HKEY_LOCAL_MACHINE\ ...

  10. P1829 [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演

    又一道...分数和取模次数成正比$qwq$ 求:$\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j)$ 原式 $=\sum_{i=1}^N\sum_{j=1}^M\frac{i*j}{g ...