luogu 3708 koishi的数学题 递推 线性筛
题目链接
题意
输入一个整数\(n\)\((n\leq 1e6)\),设\(f(x)=\sum_{i=1}^n x\mod i\),你需要输出\(f(1),f(2)...,f(n)\).
输入输出格式
输入格式:
一个正整数n。
输出格式:
一行用空格分隔的n个整数\(f(1),f(2)...f(n)\).
输入输出样例
输入样例#1:
10
输出样例#1:
9 16 22 25 29 27 29 24 21 13
思路
列表
\i 1 2 3 4 5 6 7 8 9 10
x mod i\
x\
1 0 1 1 1 1 1 1 1 1 1
2 0 0 2 2 2 2 2 2 2 2
3 0 1 0 3 3 3 3 3 3 3
4 0 0 1 0 4 4 4 4 4 4
5 0 1 2 1 0 5 5 5 5 5
6 0 0 0 2 1 0 6 6 6 6
7 0 1 1 3 2 1 0 7 7 7
8 0 0 2 0 3 2 1 0 8 8
9 0 1 0 1 4 3 2 1 0 9
10 0 0 1 2 0 4 3 2 1 0
递推
在已经算出了\(f(x)\)的基础上,怎么得到\(f(x+1)\)呢?
因为$$(x+1)\mod i = ((x\mod i)+1)\mod i=
\begin{eqnarray}
\begin{cases}
(x\mod i)+1,&i\nmid (x+1)\cr
0, &i\mid (x+1)
\end{cases}
\end{eqnarray}$$
所以\(f(x+1)=f(x)+n-1-g(x+1)\),\(n-1\)的含义为下一行比上一行每个多\(1\),\(g(x+1)\)的含义为贡献本该算作\(0\)却算作了\(i\)因而多加了的部分,即\(\sum_{i\mid (x+1)}i\).
\(i=1\)的时候特殊处理一下。
线性筛
线性筛求一下约数和即可解决。
此处具体讲解可参见 积性函数的性质及证明 + 线性筛 ——Wubaizhe
Code
#include <bits/stdc++.h>
#define maxn 1000010
using namespace std;
typedef long long LL;
int prime[maxn], mx[maxn], sum[maxn], n, tot;
LL d[maxn], ans[maxn];
bool vis[maxn];
void init() {
d[1] = 0;
for (int i = 2; i <= n; ++i) {
if (!vis[i]) {
prime[tot++] = i;
d[i] = sum[i] = i+1;
mx[i] = i;
}
for (int j = 0; j < tot; ++j) {
if (prime[j] * i > n) break;
vis[prime[j] * i] = true;
if (i % prime[j] == 0) {
mx[i * prime[j]] = mx[i] * prime[j];
sum[i * prime[j]] = sum[i] + mx[i * prime[j]];
d[i * prime[j]] = d[i] / sum[i] * sum[i * prime[j]];
break;
}
mx[i * prime[j]] = prime[j];
sum[i * prime[j]] = prime[j] + 1;
d[i * prime[j]] = d[i] * d[prime[j]];
}
}
for (int i = 2; i <= n; ++i) --d[i];
}
int main() {
scanf("%d", &n);
init();
ans[1] = n-1; printf("%lld", ans[1]);
for (int i = 2; i <= n; ++i) {
ans[i] = ans[i-1] + n-1 - d[i];
printf(" %lld", ans[i]);
}
printf("\n");
return 0;
}
luogu 3708 koishi的数学题 递推 线性筛的更多相关文章
- CJOJ 2255 【NOIP2016】组合数问题 / Luogu 2822 组合数问题 (递推)
CJOJ 2255 [NOIP2016]组合数问题 / Luogu 2822 组合数问题 (递推) Description 组合数\[C^m_n\]表示的是从n个物品中选出m个物品的方案数.举个例子, ...
- Luogu P2327 [SCOI2005]扫雷【递推/数学】By cellur925
题目传送门 推了好久啊.看来以后要多玩扫雷了qwq. 其实本题只有三种答案:0.1.2. 对于所有第一列,只要第一个数和第二个数确定后,其实整个数列就确定了,我们可以通过这个递推式得出 sec[i-] ...
- * SPOJ PGCD Primes in GCD Table (需要自己推线性筛函数,好题)
题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演 ...
- LUOGU P3708 koishi的数学题
传送门 解题思路 发现当x+1时,有的x%i会+1,有的会变成0,而变成0的说明是x的约数,就可以nlogn预处理出每个约数的贡献,然后每次用n-约数. 代码 #include<iostream ...
- [模板] 积性函数 && 线性筛
积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...
- [NOI2017]泳池——概率DP+线性递推
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技 ...
- CH定理与线性递推
才发觉自己数学差的要死,而且脑子有点浑浑噩噩的,学了一个晚上才学会 如果说的有什么不对的可以在下面嘲讽曲明 以下无特殊说明时,默认方阵定义在实数域上,用\(|A|\)表示\(A\)的行列式 特征值与特 ...
- luogu题解 P1707 【刷题比赛】矩阵加速递推
题目链接: https://www.luogu.org/problemnew/show/P1707 分析: 洛谷的一道原创题,对于练习矩阵加速递推非常不错. 首先我们看一下递推式: \(a[k+2]= ...
- 求解线性递推方程第n项的一般方法
概述 系数为常数,递推项系数均为一次的,形如下面形式的递推式,称为线性递推方程. \[f[n]=\begin{cases} C &n\in Value\\ a_1 f[n-1]+a_2 f[n ...
随机推荐
- tensorflow目标检测API之建立自己的数据集
1 收集数据 为了方便,我找了11张月儿的照片做数据集,如图1,当然这在实际应用过程中是远远不够的 2 labelImg软件的安装 使用labelImg软件(下载地址:https://github.c ...
- 【jenkins】jenkins执行nohup java报错
nohup:failed to run command 'java':No such file or directory 这是因为jenkins只认绝对路径.在shell里面有涉及到文件的都应该写成绝 ...
- vue.js笔记1.0
事件: 事件冒泡行为: 1.@click="show($event)" show:function (ev) { ev.cancelBubble=true; } 2.@click. ...
- Thinkphp 5 调试执行的SQL语句
在模型操作中 ,为了更好的查明错误,经常需要查看下最近使用的SQL语句,我们可以用getLastsql方法来输出上次执行的sql语句.例如: User::get(1); echo User::getL ...
- Python并发编程之多进程(实战)
一.multiprocessing和Process multiprocessing提供了支持子进程.通信和数据共享.执行不同形式的同步,提供了Process.Queue.Pipe.Lock等组件 创建 ...
- nRF52-PCA10040——Overview
Overview Zephyr applications use the nrf52_pca10040 board configuration to run on the nRF52 Developm ...
- Nordic Collegiate Programming Contest 2015 B. Bell Ringing
Method ringing is used to ring bells in churches, particularly in England. Suppose there are 6 bells ...
- ACM 广度优化搜索算法总结
广度优化搜索算法的本质:要求每个状态不能重复,这就需要我们:第一次先走一步可以到达的状态,如果还没有找到答案,就需要我们走到两步可以到达的状态.依次下去 核心算法:队列 基本步骤: ...
- HDU 3435 KM A new Graph Game
和HDU 3488一样的,只不过要判断一下是否有解. #include <iostream> #include <cstdio> #include <cstring> ...
- Oralce重做日志(Redo Log)
1.简介 Oracle引入重做日志的目的:数据库的恢复. Oracle相关进程:重做日志写进程(LGWR). 重做日志性质:联机日志文件,oracle服务器运行时需要管理它们. 相关数据字典:v$lo ...