洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)
这题的思路好清奇
因为只有一次查询,我们考虑二分这个值为多少
将原序列转化为一个$01$序列,如果原序列上的值大于$mid$则为$1$否则为$0$
那么排序就可以用线段树优化,设该区间内$1$的个数为$res$,如果是升序排序,只要把$[r-res+1,r]$区间全部变为$1$,$[l,r-res]$区间全部变为$0$即可,用线段树区间覆盖即可
那么只要最后查询$k$的位置上是否是$1$,如果是的话$ans=mid,l=mid+1$,否则$r=mid-1$
考虑为什么能这样二分。我们经过这样之后,如果最后位置$k$上为$1$,那么这肯定是一个大于等于$mid$的数,否则肯定是一个小于$mid$的数
然后差不多了
//minamoto
#include<iostream>
#include<cstdio>
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
struct Q{
int op,l,r;
Q(){}
Q(int op,int l,int r):op(op),l(l),r(r){}
}q[N];
int n,m,st[N],val[N],tag[N<<],sum[N<<],k;
inline void upd(int p){sum[p]=sum[p<<]+sum[p<<|];}
inline void pd(int p,int l,int r){
if(~tag[p]){
tag[p<<]=tag[p<<|]=tag[p];
sum[p<<]=tag[p]*l,sum[p<<|]=tag[p]*r;
tag[p]=-;
}
}
void build(int p,int l,int r){
tag[p]=-;
if(l==r) return (void)(sum[p]=st[l]);
int mid=(l+r)>>;
build(p<<,l,mid),build(p<<|,mid+,r);
upd(p);
}
void update(int p,int l,int r,int ql,int qr,int val){
if(ql<=l&&qr>=r) return (void)(sum[p]=val*(r-l+),tag[p]=val);
int mid=(l+r)>>;
pd(p,mid-l+,r-mid);
if(ql<=mid) update(p<<,l,mid,ql,qr,val);
if(qr>mid) update(p<<|,mid+,r,ql,qr,val);
upd(p);
}
int query(int p,int l,int r,int ql,int qr){
if(ql<=l&&qr>=r) return sum[p];
int mid=(l+r)>>;
pd(p,mid-l+,r-mid);
int res=;
if(ql<=mid) res+=query(p<<,l,mid,ql,qr);
if(qr>mid) res+=query(p<<|,mid+,r,ql,qr);
return res;
}
int check(int mid){
for(int i=;i<=n;++i)
st[i]=val[i]>=mid?:;
build(,,n);
for(int i=;i<=m;++i){
int l=q[i].l,r=q[i].r;
if(q[i].op==){
int res=query(,,n,l,r);
update(,,n,r-res+,r,);
update(,,n,l,r-res,);
}else{
int res=query(,,n,l,r);
update(,,n,l,l+res-,);
update(,,n,l+res,r,);
}
}
return query(,,n,k,k);
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;++i) val[i]=read();
for(int i=,op,l,r;i<=m;++i)
op=read(),l=read(),r=read(),q[i]=Q(op,l,r);
k=read();
int l=,r=n,ans=;
while(l<=r){
int mid=(l+r)>>;
if(check(mid)) l=mid+,ans=mid;else r=mid-;
}
printf("%d\n",ans);
return ;
}
洛谷P2824 [HEOI2016/TJOI2016]排序(线段树)的更多相关文章
- 洛谷$P2824\ [HEOI2016/TJOI2016]$ 排序 线段树+二分
正解:线段树+二分 解题报告: 传送门$QwQ$ 昂着题好神噢我$jio$得$QwQQQQQ$,,, 开始看到长得很像之前考试题的亚子,,,然后仔细康康发现不一样昂$kk$,就这里范围是$[1,n]$ ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 解题报告
P2824 [HEOI2016/TJOI2016]排序 题意: 有一个长度为\(n\)的1-n的排列\(m\)次操作 \((0,l,r)\)表示序列从\(l\)到\(r\)降序 \((1,l,r)\) ...
- [Luogu P2824] [HEOI2016/TJOI2016]排序 (线段树+二分答案)
题面 传送门:https://www.luogu.org/problemnew/show/P2824 Solution 这题极其巧妙. 首先,如果直接做m次排序,显然会T得起飞. 注意一点:我们只需要 ...
- 洛谷 P2824 [HEOI2016/TJOI2016]排序 (线段树合并)
(另外:题解中有一种思路很高妙而且看上去可以适用一些其他情况的离线方法) 线段树合并&复杂度的简单说明:https://blog.csdn.net/zawedx/article/details ...
- [洛谷P2824][HEOI2016/TJOI2016]排序
题目大意:一个全排列,两种操作: 1. $0\;l\;r:$把$[l,r]$升序排序2. $1\;l\;r:$把$[l,r]$降序排序 最后询问第$k$位是什么 题解:二分答案,把比这个数大的赋成$1 ...
- Luogu P2824 [HEOI2016/TJOI2016]排序 线段树+脑子
只会两个$log$的$qwq$ 我们二分答案:设答案为$ans$,则我们把$a[i]<=ans$全部设成$0$,把$a[i]>ans$全部设成$1$,扔到线段树里,这样区间排序(升序)就是 ...
- day 1 晚上 P2824 [HEOI2016/TJOI2016]排序 线段树
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #inclu ...
- [HEOI2016/TJOI2016]排序 线段树+二分
[HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...
- BZOJ.4552.[HEOI2016/TJOI2016]排序(线段树合并/二分 线段树)
题目链接 对于序列上每一段连续区间的数我们都可以动态开点建一棵值域线段树.初始时就是\(n\)棵. 对于每次操作,我们可以将\([l,r]\)的数分别从之前它所属的若干段区间中分离出来,合并. 对于升 ...
随机推荐
- 九度OJ 1122:吃糖果 (递归)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1522 解决:1200 题目描述: 名名的妈妈从外地出差回来,带了一盒好吃又精美的巧克力给名名(盒内共有 N 块巧克力,20 > N ...
- Delphi快捷键大全
Delphi快捷键大全 在过程.函数.事件内部, SHIFT+CTRL+向上的方向键 可跳跃到相应的过程.函数.事件的定义.相反,在过程.函数.事件的定义处,SHIFT+CTRL+向下的方向键 可跳跃 ...
- 浏览器访问配置完成的ftp服务器
在浏览器的地址栏输入: ftp://testuser:testuser@192.168.10.4 testuser 是ftp的用户名和密码: 192.168.10.4 是ftp服务器的IP地址. 亲测 ...
- Chain of Responsibility Pattern
1.Chain of Responsibility模式:将可能处理一个请求的对象链接成一个链,并将请求在这个链上传递,直到有对象处理该请求(可能需要提供一个默认处理所有请求的类,例如MFC中的Cwin ...
- selenium2 python范例
selenium2 python范例 下面脚本的功能是:打开谷歌浏览器-->跳转到某个网址-->输入用户名和密码登录-->读取页面内的数据并求和. # coding=utf-8 #编 ...
- Multi-lingual Support
Multi-lingual Support One problem with dealing with non-Latin characters programmatically is that, f ...
- Hexo建站过程总结
Hexo 是一个基于 Node.js 快速.简洁且高效的博客框架,可以将 Markdown 文件快速的生成静态网页,托管在 GitHub Pages 上. 由于原来博客的主机费用问题,我没有办法再在那 ...
- POJ 2309 BST(二叉搜索树)
BST Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8657 Accepted: 5277 Description C ...
- LightOJ1220 —— 质因数分解
题目链接:https://vjudge.net/problem/LightOJ-1220 1220 - Mysterious Bacteria PDF (English) Statistics ...
- git bash的使用
一.创建本地版本控制仓库 cd e: 进入e盘 cd gitspace 进入gitspace文件夹 git init 将E:\gitspace初始化为本地版本控制仓库 Initialized em ...