六度分离

1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人,即只用6个人就可以将他们联系在一起,因此他的理论也被称为“六度分离”理论(six degrees of separation)。虽然米尔格兰姆的理论屡屡应验,一直也有很多社会学家对其兴趣浓厚,但是在30多年的时间里,它从来就没有得到过严谨的证明,只是一种带有传奇色彩的假说而已。

Lele对这个理论相当有兴趣,于是,他在HDU里对N个人展开了调查。他已经得到了他们之间的相识关系,现在就请你帮他验证一下“六度分离”是否成立吧。

Input本题目包含多组测试,请处理到文件结束。 
对于每组测试,第一行包含两个整数N,M(0<N<100,0<M<200),分别代表HDU里的人数(这些人分别编成0~N-1号),以及他们之间的关系。 
接下来有M行,每行两个整数A,B(0<=A,B<N)表示HDU里编号为A和编号B的人互相认识。 
除了这M组关系,其他任意两人之间均不相识。 
Output对于每组测试,如果数据符合“六度分离”理论就在一行里输出"Yes",否则输出"No"。Sample Input

8 7
0 1
1 2
2 3
3 4
4 5
5 6
6 7
8 8
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 0

Sample Output

Yes
Yes 思路:Floyd求出所有点两两之间的最短路径。依次枚举两点间距离,大于7输出No。考虑到Floyd O(n^3)的复杂度,用邻接矩阵存图足够了。
#include<stdio.h>

int main()
{
int a[][];
int n,m,x,y,c,i,j,k;
while(scanf("%d%d",&n,&m)!=EOF){
for(i=;i<n;i++)
for(j=;j<n;j++)
a[i][j]=;
for(i=;i<=m;i++){
scanf("%d%d",&x,&y);
a[x][y]=;
a[y][x]=;
}
for(k=;k<n;k++)
for(i=;i<n;i++)
for(j=;j<n;j++)
if(a[i][k]+a[k][j]<a[i][j])
a[i][j]=a[i][k]+a[k][j];
c=;
for(i=;i<n;i++){
for(j=;j<n;j++){
if(a[i][j]>) {printf("No\n"); c=; break;}
if(i==n-&&j==n-) printf("Yes\n");
}
if(!c) break;
}
}
return ;
}

HDU - 1869 六度分离 Floyd多源最短路的更多相关文章

  1. ACM: HDU 1869 六度分离-Dijkstra算法

    HDU 1869六度分离 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Descri ...

  2. hdu 1869 六度分离(最短路floyd)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1869 六度分离 Time Limit: 5000/1000 MS (Java/Others)    M ...

  3. hdu 1869 (Floyd)

    http://acm.hdu.edu.cn/showproblem.php?pid=1869 六度分离 Time Limit: 5000/1000 MS (Java/Others)    Memory ...

  4. Floyd多源最短路

    可以对每一个顶点使用Dijkstra算法求多源最短路. 这里我们来介绍另一种解法:Floyd Floyd算法的主要思想是迭代.每次迭代会朝着答案更近一步. 首先定义一个二维数组Dk[i][j](k初始 ...

  5. HDU 1869 六度分离 最短路

    解题报告: 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一个名为“小世界现象(small world phenomenon)”的著名假说,大意是说,任何2个素不相识的人中间最多只隔着6个人, ...

  6. HDU 1869 六度分离【floyd】

    题意:给出n个人,m个关系,问是否满足任意两个人之间的距离通过6个人就可以连接 用floyd就可以了,注意距离是大于7 #include<iostream> #include<cst ...

  7. HDU 1869 六度分离

    六度分离 http://acm.hdu.edu.cn/showproblem.php?pid=1869 Problem Description 1967年,美国著名的社会学家斯坦利·米尔格兰姆提出了一 ...

  8. 【floyd 多源最短路】 poj 1125

    #include <stdio.h> #include <iostream> #include <memory.h> using namespace std; ][ ...

  9. 最短路算法模板合集(Dijkstar,Dijkstar(优先队列优化), 多源最短路Floyd)

    再开始前我们先普及一下简单的图论知识 图的保存: 1.邻接矩阵. G[maxn][maxn]; 2.邻接表 邻接表我们有两种方式 (1)vector< Node > G[maxn]; 这个 ...

随机推荐

  1. dom 显示 与否 的对 ecmascript 变量的 监听

    dom 显示 与否  的对 ecmascript   变量的 监听

  2. The connection between feature spaces and smoothness is not obvious, and is one of the things we’ll discuss in the course.

    http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf

  3. 【题解】NOI2015软件包管理器

    [题解][P2146 NOI2015]软件包管理器 实际上就是树链剖分板子题. 对于\(install\)操作,直接查询它到\(0\)节点有多少已经安装了的,再用总数减去它. 对于\(uninstal ...

  4. 利用socket.io实现多人聊天室(基于Nodejs)

    socket.io简单介绍 在Html5中存在着这种一个新特性.引入了websocket,关于websocket的内部实现原理能够看这篇文章.这篇文章讲述了websocket无到有,依据协议,分析数据 ...

  5. 一起来学linux:ACL

    传统的 权限设置只有user,group,other三种,并没有办法针对某一个用户或者某一个组来设定权限.ACL就是用于这个目的的 那 ACL 主要可以针对哪些方面来控制权限呢?他主要可以针对几个项目 ...

  6. Android Development Note-02

    输入框左侧的logo:android:drawableleft   弹出提示: Toast.makeText(this,"提示",Toast.LENGHT_LONG).show() ...

  7. JETSON TK1~Ubuntu14.04 Armhf源更新

    Ubuntu armhf版本的源网址不同于普通Ubuntu系统,如果采用如下网址会出现问题,导致sudo apt-get update出现Error. 之前的连接: deb http://archiv ...

  8. python输出shell命令执行结果

    import os,subprocess p = subprocess.Popen("df -h", shell=True, stdout=subprocess.PIPE) out ...

  9. gcc error - "iostream: No such file or directory"

    #include <iostream> using namespace std; int main(void) { cout<<"Hello World!\n&quo ...

  10. sping junit test

    @ContextConfiguration(locations="classpath:spring.xml")public class BaseTest extends Abstr ...