不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理。

-------------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int MAXN = 109;
const int MAXM = 1009;
const int MOD = 31011;
 
struct edge {
int u, v, w;
bool operator < (const edge &e) const {
return w < e.w;
}
} E[MAXM];
 
int N, M, L, R, p_c, fa_c, tot, ans = 1;
int h[MAXN], cnt[MAXN], n;
int p[MAXN], fa[MAXN], par[MAXN];
bool chosen[MAXM];
 
int Find(int par[], int x) {
return x == par[x] ? x : par[x] = Find(par, par[x]);
}
 
inline void InitDsu(int par[]) {
for(int i = 0; i < N; i++) par[i] = i;
}
 
void Init() {
scanf("%d%d", &N, &M);
for(int i = 0; i < M; i++) {
scanf("%d%d%d", &E[i].u, &E[i].v, &E[i].w);
E[i].u--; E[i].v--;
}
sort(E, E + M);
h[0] = E[0].w;
n = 1;
for(int i = 1; i < M; i++)
if(E[i].w != E[i - 1].w) h[n++] = E[i].w;
h[n] = -1;
}
 
void Dfs(int x, int c) {
if(!c) {
memcpy(fa, par, sizeof fa);
int Delta = 0;
for(int i = L; i < x; i++) if(chosen[i]) {
int u = Find(fa, E[i].u), v = Find(fa, E[i].v);
if(u != v)
Delta++, fa[u] = v;
}
if(Delta + p_c == fa_c) tot++;
return;
}
if(x >= R) return;
chosen[x] = true; Dfs(x + 1, c - 1);
chosen[x] = false; Dfs(x + 1, c);
}
 
int main() {
Init();
InitDsu(p);
for(int i = 0; i < M; i++) {
int u = Find(p, E[i].u), v = Find(p, E[i].v);
if(u != v)
p[u] = v;
}
for(int i = 1; i < N; i++) if(Find(p, i) != Find(p, i - 1)) {
puts("0"); return 0;
}
memset(chosen, 0, sizeof chosen);
InitDsu(p);
p_c = N; R = 0;
for(int i = 0; i < n; i++) {
for(L = R; E[L].w == E[R].w; R++);
int cnt = 0;
fa_c = p_c;
memcpy(par, p, sizeof p);
for(int j = L; j < R; j++) {
int u = Find(p, E[j].u), v = Find(p, E[j].v);
if(u != v)
p[u] = v, p_c--, cnt++;
}
tot = 0;
Dfs(L, cnt);
(ans *= tot) %= MOD;
}
printf("%d\n", ans);
return 0;
}

-------------------------------------------------------------------------------------

1016: [JSOI2008]最小生成树计数

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 3916  Solved: 1557
[Submit][Status][Discuss]

Description

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

HINT

Source

BZOJ 1016: [JSOI2008]最小生成树计数( kruskal + dfs )的更多相关文章

  1. [BZOJ 1016] [JSOI2008] 最小生成树计数 【DFS】

    题目链接:BZOJ - 1016 题目分析 最小生成树的两个性质: 同一个图的最小生成树,满足: 1)同一种权值的边的个数相等 2)用Kruscal按照从小到大,处理完某一种权值的所有边后,图的连通性 ...

  2. bzoj 1016: [JSOI2008]最小生成树计数【dfs+克鲁斯卡尔】

    有一个性质就是组成最小生成树总边权值的若干边权总是相等的 这意味着按边权排序后在权值相同的一段区间内的边能被选入最小生成树的条数是固定的 所以先随便求一个最小生成树,把每段的入选边数记录下来 然后对于 ...

  3. 【BZOJ 1016】 1016: [JSOI2008]最小生成树计数 (DFS|矩阵树定理)

    1016: [JSOI2008]最小生成树计数 Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树 ...

  4. bzoj1016: [JSOI2008]最小生成树计数(kruskal+dfs)

    1016: [JSOI2008]最小生成树计数 题目:传送门 题解: 神题神题%%% 据说最小生成树有两个神奇的定理: 1.权值相等的边在不同方案数中边数相等  就是说如果一种方案中权值为1的边有n条 ...

  5. [BZOJ]1016 JSOI2008 最小生成树计数

    最小生成树计数 题目描述 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同 ...

  6. BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)

    题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...

  7. bzoj 1016 [JSOI2008]最小生成树计数——matrix tree(相同权值的边为阶段缩点)(码力)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1016 就是缩点,每次相同权值的边构成的联通块求一下matrix tree.注意gauss里的 ...

  8. BZOJ 1016 [JSOI2008]最小生成树计数 ——Matrix-Tree定理

    考虑从小往大加边,然后把所有联通块的生成树个数计算出来. 然后把他们缩成一个点,继续添加下一组. 最后乘法原理即可. 写起来很恶心 #include <queue> #include &l ...

  9. 1016: [JSOI2008]最小生成树计数

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 6200  Solved: 2518[Submit][St ...

随机推荐

  1. Ubuntu下,在Eclipse中使用JNI调用ffmpeg

    Android的应用层开发大部分还是采用JAVA,如果想使用ffmpeg库,就必须利用JNI,使得Java可以调用C/C++的库. JNI其实就是定义的一个转接接口,可以让Java的代码调用C/C++ ...

  2. image.xx.com 通过haproxy 跳转到内部图片服务器

    <pre name="code" class="html">http://www.hyyche.com/#main C:\Users\Adminis ...

  3. 柯南君:看大数据时代下的IT架构(6)消息队列之RabbitMQ--案例(Publish/Subscribe起航)

    二.Publish/Subscribe(发布/订阅)(using the Java Client) 为了说明这个模式,我们将构建一个简单的日志系统.它将包括两个项目: 第一个将发出日志消息 第二个将接 ...

  4. 【CTSC1999】【解救大兵瑞恩】

    44. [CTSC1999] 解救大兵瑞恩 ★★☆ 输入文件:rescue.in 输出文件:rescue.out 简单对照 时间限制:1 s 内存限制:128 MB 问题描写叙述 1944年,特种兵麦 ...

  5. select2简单例子

    1.html中静态值 html <%--multiple 为多选--%> <select multiple id="e1"> <option>& ...

  6. js 模拟java 中 的map

    //js模拟map Map = { obj : {}, put : function(key , value){ this.obj[key] = value; }, get : function(ke ...

  7. oracle默认的hr用户使用脚本安装

    1 解压到%ORACLE_HOME%/demo/schema/human_resources/目录下 2 在sys或system用户下运行hr_main.sql脚本(运行命令:@%ORACLE_HOM ...

  8. Unity5UGUI 官方教程学习笔记(三)UI BUTTON

    Button Interactable :为了避免与该按钮产生交互,可以设置它为false Transition: 管理按钮在正常情况 ,按下,经过时的显示状态  None  按钮整正常工作 但是在按 ...

  9. C++类的常成员函数

    让一个成员函数带上常量性是什么意思呢?通常的答案是,一个常成员函数不会更改其class对象.这是一种平凡的表述,而编译器实现的手法也相当平凡. 任何非静态成员函数其实都被编译器隐式插入了一个指针类型的 ...

  10. 学习PS必须弄懂的专业术语

    在学习PS的过程中,我们经常会遇到一些专业术语,下面我们来对一些常用的.比较难理解的术语进行简单讲解. 像素:像素是构成图像的最基本元素,它实际上是一个个独立的小方格,每个像素都能记录它所在的位置和颜 ...