题目

给出一个长度为\(n\)的数列\(a\),求

\[\sum_{i=1}^n\sum_{j=i}^n[\gcd(a_{i\sim j})\;xor\;or(a_{i\sim j})=k]
\]

分析

考虑如何优化这个\(O(n^2logn)\)的方法,显然无论是\(\gcd\)还是\(or\)都有连续位置答案是一定的

考虑每次在后面加入一个数后,从1开始更新\(\gcd\)和\(or\),如果遇到\(\gcd\)或者\(\or\)相同的一段,用链表将其合并

如果\(gcd\)下一个位置在\(or\)下一个位置之前那么跳到下一个\(gcd\),否则跳到下一个\(or\),我不会证明,但是时间复杂度应该是\(O(nlogn)\)


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=500011; long long ans;
int Gcd[N],Or[N],a[N],n,k,Guf[N],Gre[N],Ouf[N],Ore[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed min(int a,int b){return a<b?a:b;}
inline signed gcd(int a,int b){return !b?a:gcd(b,a%b);}
inline void doit(int ed){
for (rr int st=1;st<=ed;){
Gcd[st]=gcd(Gcd[st],a[ed]),Or[st]|=a[ed];
if (Gcd[st]==(Or[st]^k)) ans+=min(Guf[st],Ouf[st])-st;//这一段都是答案
if (Gcd[st]==Gcd[Gre[st]]) Guf[Gre[st]]=Guf[st],Gre[Guf[st]]=Gre[st];//gcd相等合并
if (Or[st]==Or[Ore[st]]) Ouf[Ore[st]]=Ouf[st],Ore[Ouf[st]]=Ore[st];//or相等合并
if (Guf[st]<Ouf[st]) Or[Guf[st]]=Or[st],Ouf[Guf[st]]=Ouf[st],Ore[Guf[st]]=Ore[st];//先把原先合并的段拆成两部分
if (Guf[st]>Ouf[st]) Gcd[Ouf[st]]=Gcd[st],Guf[Ouf[st]]=Guf[st],Gre[Ouf[st]]=Gre[st];//同上
st=min(Guf[st],Ouf[st]);//跳到下一个
}
}
signed main(){
n=iut(),k=iut();
for (rr int i=1;i<=n;++i) Gcd[i]=Or[i]=a[i]=iut();
for (rr int i=1;i<=n;++i) Gre[i]=Ore[i]=i-1,Guf[i]=Ouf[i]=i+1;//链表
for (rr int i=1;i<=n;++i) doit(i);
return !printf("%lld",ans);
}

#链表#洛谷 3794 签到题IV的更多相关文章

  1. 洛谷3794 签到题IV

    题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...

  2. A 洛谷 P3601 签到题 [欧拉函数 质因子分解]

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  4. 洛谷 P3601 签到题

    https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...

  5. [Luogu 3794]签到题IV

    Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...

  6. 洛谷P3601 签到题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  7. 洛谷P3764 签到题 III

    题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...

  8. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  9. [洛谷P1707] 刷题比赛

    洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...

  10. 洛谷P5274 优化题(ccj)

    洛谷P5274 优化题(ccj) 题目背景 CCJCCJ 在前往参加 Universe \ OIUniverse OI 的途中... 题目描述 有一个神犇 CCJCCJ,他在前往参加 Universe ...

随机推荐

  1. 以二进制文件安装K8S之高可用部署架构

    在Kubernetes系统中,Master节点扮演着总控中心的角色,通过不间断地与各个工作节点(Node)通信来维护整个集群的健康工作状态,集群中各资源对象的状态则被保存在etcd数据库中. 在正式环 ...

  2. itext 生成 PDF

    itext 生成 PDF(一) 转自:https://blog.csdn.net/lcczpp/article/details/125424395   itext生成PDF excel 示例  转自: ...

  3. VS Code实现SSH远程开发

    最近收获一台新台式机,但是个人主要还是使用自己的笔记本,用了几天远程控制,感觉各种不方便,最终决定配置一下VS Code实现SSH远程开发,特此记录. 首先介绍一下环境,控制端是Windows 11, ...

  4. 项目实战:Qt监测操作系统物理网卡通断v1.1.0(支持windows、linux、国产麒麟系统)

    需求   使用Qt软件开发一个检测网卡的功能.  兼容windows.linux,国产麒麟系统(同为linux) Demo   windows上运行:       国产麒麟操作上运行:       功 ...

  5. protobuf简单示例

    user.proto syntax = "proto3"; package demo; option go_package = "./pb"; //指定go_o ...

  6. django项目中使用nginx+fastdfs上传图片和使用图片的流程

    自定义文件存储类 1.先弄清楚django中默认的上传文件存储FileSystemStorage类 https://docs.djangoproject.com/zh-hans/2.2/ref/fil ...

  7. Go语言的100个错误使用场景(55-60)|并发基础

    目录 前言 8. 并发基础 8.1 混淆并发与并行的概念(#55) 8.2 认为并发总是更快(#56) 8.3 分不清何时使用互斥锁或 channel(#57) 8.4 不理解竞态问题(#58) 8. ...

  8. Java 线程通信 例子:使用俩个线程打印1-100.线程1 线程2 交替打印

    1 package bytezero.threadcommunication; 2 3 /** 4 * 线程通信的例子:使用俩个线程打印1-100.线程1 线程2 交替打印 5 * 6 * 涉及到的三 ...

  9. 一些shell脚本

    1.判断目录是否为空 DIRECTORY=$1 #在此加上是不是目录的判断. if [ "ls -A $DIRECTORY" = "" ]; then echo ...

  10. 淘宝电商api接口 获取商品详情 搜索商品

    iDataRiver平台 https://www.idatariver.com/zh-cn/ 提供开箱即用的taobao淘宝电商数据采集API,供用户按需调用. 接口使用详情请参考淘宝接口文档 接口列 ...