题目

给出一个长度为\(n\)的数列\(a\),求

\[\sum_{i=1}^n\sum_{j=i}^n[\gcd(a_{i\sim j})\;xor\;or(a_{i\sim j})=k]
\]

分析

考虑如何优化这个\(O(n^2logn)\)的方法,显然无论是\(\gcd\)还是\(or\)都有连续位置答案是一定的

考虑每次在后面加入一个数后,从1开始更新\(\gcd\)和\(or\),如果遇到\(\gcd\)或者\(\or\)相同的一段,用链表将其合并

如果\(gcd\)下一个位置在\(or\)下一个位置之前那么跳到下一个\(gcd\),否则跳到下一个\(or\),我不会证明,但是时间复杂度应该是\(O(nlogn)\)


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int N=500011; long long ans;
int Gcd[N],Or[N],a[N],n,k,Guf[N],Gre[N],Ouf[N],Ore[N];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed min(int a,int b){return a<b?a:b;}
inline signed gcd(int a,int b){return !b?a:gcd(b,a%b);}
inline void doit(int ed){
for (rr int st=1;st<=ed;){
Gcd[st]=gcd(Gcd[st],a[ed]),Or[st]|=a[ed];
if (Gcd[st]==(Or[st]^k)) ans+=min(Guf[st],Ouf[st])-st;//这一段都是答案
if (Gcd[st]==Gcd[Gre[st]]) Guf[Gre[st]]=Guf[st],Gre[Guf[st]]=Gre[st];//gcd相等合并
if (Or[st]==Or[Ore[st]]) Ouf[Ore[st]]=Ouf[st],Ore[Ouf[st]]=Ore[st];//or相等合并
if (Guf[st]<Ouf[st]) Or[Guf[st]]=Or[st],Ouf[Guf[st]]=Ouf[st],Ore[Guf[st]]=Ore[st];//先把原先合并的段拆成两部分
if (Guf[st]>Ouf[st]) Gcd[Ouf[st]]=Gcd[st],Guf[Ouf[st]]=Guf[st],Gre[Ouf[st]]=Gre[st];//同上
st=min(Guf[st],Ouf[st]);//跳到下一个
}
}
signed main(){
n=iut(),k=iut();
for (rr int i=1;i<=n;++i) Gcd[i]=Or[i]=a[i]=iut();
for (rr int i=1;i<=n;++i) Gre[i]=Ore[i]=i-1,Guf[i]=Ouf[i]=i+1;//链表
for (rr int i=1;i<=n;++i) doit(i);
return !printf("%lld",ans);
}

#链表#洛谷 3794 签到题IV的更多相关文章

  1. 洛谷3794 签到题IV

    题目描述 给定一个长度为n的序列$a_1,a_2...a_n$,其中每个数都是正整数. 你需要找出有多少对(i,j),$1 \leq i \leq j \leq n$且$gcd(a_i,a_{i+1} ...

  2. A 洛谷 P3601 签到题 [欧拉函数 质因子分解]

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  3. 洛谷P3601签到题(欧拉函数)

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  4. 洛谷 P3601 签到题

    https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...

  5. [Luogu 3794]签到题IV

    Description 题库链接 给定长度为 \(n\) 的序列 \(A\).求有多少子段 \([l,r]\) 满足 \[ \left(\gcd_{l\leq i\leq r}A_i\right) \ ...

  6. 洛谷P3601 签到题

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  7. 洛谷P3764 签到题 III

    题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...

  8. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  9. [洛谷P1707] 刷题比赛

    洛谷题目连接:刷题比赛 题目背景 nodgd是一个喜欢写程序的同学,前不久洛谷OJ横空出世,nodgd同学当然第一时间来到洛谷OJ刷题.于是发生了一系列有趣的事情,他就打算用这些事情来出题恶心大家-- ...

  10. 洛谷P5274 优化题(ccj)

    洛谷P5274 优化题(ccj) 题目背景 CCJCCJ 在前往参加 Universe \ OIUniverse OI 的途中... 题目描述 有一个神犇 CCJCCJ,他在前往参加 Universe ...

随机推荐

  1. 【Android逆向】破解看雪test3.apk方案二

    方案二就是要hook那三个条件,不让追加字符串变成false v20 = "REAL"; clazz = _JNIEnv::FindClass(env, "android ...

  2. Programming Abstractions in C阅读笔记:p293-p302

    <Programming Abstractions in C>学习第73天,p293-p302总结,总计10页. 一.技术总结 1.时间复杂度 (1)quadratic time(二次时间 ...

  3. vue upload 图片转base64、转二进制数组,保存编码数据到文件

    功能需求 1.图片转base64 2.base 64 转二进制数组 3.保存二进制数据到文件下载到本地 解决方法 问题1: 参考资料 vue element upload图片 转换成base64 具体 ...

  4. 【Python OO其二】设计模式之工厂模式(举例说明)

    工厂模式 工厂模式中的"工厂"实际上就是把类看成制造某种模板的工具(工厂),由这个类生成的实例除了本身自有的属性外,还可以通过指定的方式产出具有不同属性的同一类实例 比如:有一个面 ...

  5. 第一百零四篇:DOM事件流

    好家伙,JS基础接着学,   1.事件流 页面哪个部分拥有特定的事件? 可以把页面想象成一个同心圆, 当你戳了其中的一点,其实你同时戳中了很多个圆   当你点击一个页面中的按钮,实际上你同时点击了这个 ...

  6. 【Azure 应用服务】App Service for Windows 环境中为Tomcat自定义4xx/5xx页面

    问题描述 通过设置Java Web项目,实现在App Service For Windows环境中达到自定义4XX/5XX的页面效果 问题解答 第一步:在本地项目文件中打开web.xml文件 (src ...

  7. 【Azure Developer】Python代码获取的Token出现'Authentication_MissingOrMalformed'问题

    问题描述 Python 调用Azure AD中所注册的应用生成Token代码: import requests, json client_id = 'yourclientid' client_secr ...

  8. C#的Winform程序关于单击和双击的区别 - 开源研究系列文章

    前些天编码的时候有个关于应用程序的托盘图标的鼠标Mouse Down里的单击和双击的问题,只是想单击的时候显示主窗体,双击的时候显示操作窗体.但是编码并调试的时候发现Windows的鼠标双击的事件先执 ...

  9. .Net缓存之MemoryCahe

    1. MemoryCahe NetCore中的缓存和System.Runtime.Caching很相似,但是在功能上做了增强,缓存的key支持object类型:提供了泛型支持:可以读缓存和单个缓存项的 ...

  10. FolkMQ 是怎样进行消息的事务处理?

    FolkMQ 提供了二段式提交的事务提交的机制(TCC 模型).允许生产者在发送消息时绑定到一个事务中并接收事务的管理,以确保消息的原子性(要么全成功,要么全失败).在 FolkMQ 中,事务是通过 ...