#欧拉序,线段树#洛谷 6845 [CEOI2019] Dynamic Diameter
题目
动态修改边权,强制在线询问树的直径。
分析
设 \(dis[x]\) 表示 \(x\) 到1号点的距离。
那么树的直径就可以表示成 \(dis[x]+dis[y]-2*dis[lca]\)
只需要保证 \(lca\) 被夹在 \(x,y\) 之间,欧拉序可以满足这样的条件。
用欧拉序将树拍成一个序列,也就是要询问 \(\max_{i\leq j\leq k}\{dis[i]+dis[k]-2*dis[j]\}\)
维护区间最大值,区间最小值,\(dis[i]-2*dis[j]\) 的最大值,\(dis[k]-2*dis[j]\) 的最大值,以及区间的答案。
修改边权相当于在子树区间加,直接用线段树维护就可以了。
代码
#include <cstdio>
#include <cctype>
using namespace std;
const int N=200011; typedef long long lll;
struct node{int y; lll w; int next;}e[N];
int dfn[N],nfd[N],as[N],n,et=1,m,tot,rfn[N];
lll lim,lans,dis[N],w[N<<2],lazy[N<<2],lmx[N<<2],rmx[N<<2],mx[N<<2],mn[N<<2];
lll iut(){
lll ans=0,f=1; char c=getchar();
while (!isdigit(c)) f=(c=='-')?-f:f,c=getchar();
while (isdigit(c)) ans=ans*10+c-48,c=getchar();
return ans*f;
}
void print(lll ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
lll min(lll a,lll b){return a<b?a:b;}
lll max(lll a,lll b){return a>b?a:b;}
void dfs(int x,int fa){
nfd[dfn[x]=++tot]=x;
for (int i=as[x];i;i=e[i].next)
if (e[i].y!=fa){
dis[e[i].y]=dis[x]+e[i].w,
dfs(e[i].y,x),nfd[++tot]=x;
}
rfn[x]=tot;
}
void pup(int k){
mn[k]=min(mn[k<<1],mn[k<<1|1]),mx[k]=max(mx[k<<1],mx[k<<1|1]);
lmx[k]=max(max(lmx[k<<1],lmx[k<<1|1]),mx[k<<1]-2*mn[k<<1|1]);
rmx[k]=max(max(rmx[k<<1],rmx[k<<1|1]),mx[k<<1|1]-2*mn[k<<1]);
w[k]=max(max(w[k<<1],w[k<<1|1]),max(lmx[k<<1]+mx[k<<1|1],mx[k<<1]+rmx[k<<1|1]));
}
void build(int k,int l,int r){
if (l==r){
mn[k]=mx[k]=dis[nfd[l]],
lmx[k]=rmx[k]=-dis[nfd[l]];
return;
}
int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
pup(k);
}
void ptag(int k,lll z){mn[k]+=z,mx[k]+=z,lmx[k]-=z,rmx[k]-=z,lazy[k]+=z;}
void update(int k,int l,int r,int x,int y,lll z){
if (l==x&&r==y){
ptag(k,z);
return;
}
int mid=(l+r)>>1;
if (lazy[k]){
ptag(k<<1,lazy[k]);
ptag(k<<1|1,lazy[k]);
lazy[k]=0;
}
if (y<=mid) update(k<<1,l,mid,x,y,z);
else if (x>mid) update(k<<1|1,mid+1,r,x,y,z);
else update(k<<1,l,mid,x,mid,z),update(k<<1|1,mid+1,r,mid+1,y,z);
pup(k);
}
int main(){
n=iut(),m=iut(),lim=iut();
for (int i=1;i<n;++i){
int x=iut(),y=iut(); lll w=iut();
e[++et]=(node){y,w,as[x]},as[x]=et;
e[++et]=(node){x,w,as[y]},as[y]=et;
}
dfs(1,0),build(1,1,tot);
for (int i=1;i<=m;++i){
int o=(iut()+lans)%(n-1)+1; lll W=(iut()+lans)%lim;
int x=e[o<<1].y,y=e[o<<1|1].y;
if (dis[x]<dis[y]) x^=y,y^=x,x^=y;
update(1,1,tot,dfn[x],rfn[x],W-e[o<<1].w);
e[o<<1].w=e[o<<1|1].w=W,print(lans=w[1]),putchar(10);
}
return 0;
}
#欧拉序,线段树#洛谷 6845 [CEOI2019] Dynamic Diameter的更多相关文章
- BZOJ 4034 [HAOI2015]树上操作(欧拉序+线段树)
题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增 ...
- LightOJ 1370 Bi-shoe and Phi-shoe 欧拉函数+线段树
分析:对于每个数,找到欧拉函数值大于它的,且标号最小的,预处理欧拉函数,然后按值建线段树就可以了 #include <iostream> #include <stdio.h> ...
- loj1370(欧拉函数+线段树)
传送门:Bi-shoe and Phi-shoe 题意:给出多个n(1<=n<=1e6),求满足phi(x)>=n的最小的x之和. 分析:先预处理出1~1e6的欧拉函数,然后建立一颗 ...
- LOJ #2142. 「SHOI2017」相逢是问候(欧拉函数 + 线段树)
题意 给出一个长度为 \(n\) 的序列 \(\{a_i\}\) 以及一个数 \(p\) ,现在有 \(m\) 次操作,每次操作将 \([l, r]\) 区间内的 \(a_i\) 变成 \(c^{a_ ...
- BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
- [BZOJ4026]dC Loves Number Theory 欧拉函数+线段树
链接 题意:给定长度为 \(n\) 的序列 A,每次求区间 \([l,r]\) 的乘积的欧拉函数 题解 考虑离线怎么搞,将询问按右端点排序,然后按顺序扫这个序列 对于每个 \(A_i\) ,枚举它的质 ...
- BZOJ 4034: [HAOI2015]树上操作 [欧拉序列 线段树]
题意: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 显然树链剖分可做 ...
- 欧拉筛法模板and 洛谷 P3383 【模板】线性筛素数(包括清北的一些方法)
题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入格式 第一行包含两个正整数N.M,分别表示查询的范围和查询的个数. 接下来M行每行包含一个不小于1 ...
- bzoj4869: [Shoi2017]相逢是问候(欧拉函数+线段树)
这题是六省联考的...据说数据还出了点锅,心疼六省选手QAQ 首先要知道扩展欧拉定理... 可以发现每次区间操作都会使模数进行一次phi操作,而一个数最多取logp次phi就会变成1,这时后面的指数就 ...
随机推荐
- 【libGDX】Mesh立方体贴图(6张图)
1 前言 本文通过一个立方体贴图的例子,讲解三维纹理贴图的应用,案例中使用 6 张不同的图片给立方体贴图,图片如下. 读者如果对 libGDX 不太熟悉,请回顾以下内容. 使用Mesh绘制三角 ...
- 【Android逆向】frida 破解 jwxdxnx02.apk
apk 路径: https://pan.baidu.com/s/1cUInoi 密码:07p9 这题比较简单,主要是用于练习frida 1. 安装apk到手机 需要输入账号密码 2. 使用jdax 查 ...
- del,str,repr,call,bool,add,len等魔术方法以及与类相关的魔术属性---day23
1.__del__ # ### __del__魔术方法(析构方法) ''' 触发时机:当对象被内存回收的时候自动触发(1.页面执行完毕回收所有变量2.所有对象被del的时候) 功能:对象使用完毕后资源 ...
- Spring Security权限控制框架使用指南
在常用的后台管理系统中,通常都会有访问权限控制的需求,用于限制不同人员对于接口的访问能力,如果用户不具备指定的权限,则不能访问某些接口. 本文将用 waynboot-mall 项目举例,给大家介绍常见 ...
- 【Azure 容器应用】在中国区Azure上创建的容器服务默认应用域名不全
问题描述 在中国区Azure上,创建Container App服务,发现默认的应用程序URL只有前半段,并不是一个完整的域名.这是什么情况呢? 正常的Container App的URL格式为:< ...
- STL-RBT_map,set模拟实现
set #include"26RBT_container.h" namespace test { //set通过普通迭代器使用const迭代器实现限制key不能被修改 templa ...
- centos下配置修改hosts文件以及生效命令详解
linux服务器hosts文件配置 hosts文件是Linux系统中一个负责IP地址与域名快速解析的文件,以ASCII格式保存在"/etc"目录下,文件名为"hosts& ...
- Docker部署clickhouse
Clickhouse特点 完备的DBMS:不仅是个数据库,也是个数据库系统 列存储和数据压缩:典型的olap数据库特性 向量化并行:利用CPU的SIMD(Single INstruction MUlt ...
- nest.sh 脚本 发布服务
每次发布后端nest 直接执行一个脚本即可 给脚本赋值权限 chomd 777 nest.sh nest.sh 脚本 #!/bin/bash cd /root/gateway-study git pu ...
- QSAN: A Quantum-probability based Signed Attention Network for Explainable False Information Detection-CIKM20
一.摘要 在社交媒体上的虚假信息检测具有挑战性,因为它通常需要烦冗的证据收集,但又缺乏可用的比较信息.从用户评论中挖掘出的线索作为群体智慧,可能对这项任务有相当大的好处. 然而,考虑到内容和评论的隐式 ...