【AdaBoostClassifier】

Adaboost-参数:

base_estimator:基分类器,默认是决策树,在该分类器基础上进行boosting,理论上可以是任意一个分类器,但是如果是其他分类器时需要指明样本权重。

n_estimators:基分类器提升(循环)次数,默认是50次,这个值过大,模型容易过拟合;值过小,模型容易欠拟合。

learning_rate:学习率,表示梯度收敛速度,默认为1,如果过大,容易错过最优值,如果过小,则收敛速度会很慢;该值需要和n_estimators进行一个权衡,当分类器迭代次数较少时,学习率可以小一些,当迭代次数较多时,学习率可以适当放大。

algorithm:boosting算法,也就是模型提升准则,有两种方式SAMME, 和SAMME.R两种,默认是SAMME.R,两者的区别主要是弱学习器权重的度量,前者是对样本集预测错误的概率进行划分的,后者是对样本集的预测错误的比例,即错分率进行划分的,默认是用的SAMME.R。

random_state:随机种子设置。

关于Adaboost模型本身的参数并不多,但是我们在实际中除了调整Adaboost模型参数外,还可以调整基分类器的参数,关于基分类的调参,和单模型的调参是完全一样的,比如默认的基分类器是决策树,那么这个分类器的调参和我们之前的Sklearn参数详解——决策树是完全一致。

Adaboost-对象

estimators_:以列表的形式返回所有的分类器。

classes_:类别标签

estimator_weights_:每个分类器权重

estimator_errors_:每个分类器的错分率,与分类器权重相对应。

feature_importances_:特征重要性,这个参数使用前提是基分类器也支持这个属性。

Adaboost-方法

decision_function(X):返回决策函数值(比如svm中的决策距离)

fit(X,Y):在数据集(X,Y)上训练模型。

get_parms():获取模型参数

predict(X):预测数据集X的结果。

predict_log_proba(X):预测数据集X的对数概率。

predict_proba(X):预测数据集X的概率值。

score(X,Y):输出数据集(X,Y)在模型上的准确率。

staged_decision_function(X):返回每个基分类器的决策函数值

staged_predict(X):返回每个基分类器的预测数据集X的结果。

staged_predict_proba(X):返回每个基分类器的预测数据集X的概率结果。

staged_score(X, Y):返回每个基分类器的预测准确率。

AdaBoostClassifier参数的更多相关文章

  1. 代码实战之AdaBoost

    尝试用sklearn进行adaboost实战 & SAMME.R算法流程,博客地址 初试AdaBoost SAMME.R算法流程 sklearn之AdaBoostClassifier类 完整实 ...

  2. AdaBoost Classifier和Regressor

    Adaboost原理传送门 AdaBoost在我看理论课程的时候,以分类为例子来讲解的,谁知道sklearn里面基本上都有classifier和regressor两种.这个倒是我没想到的!!! fro ...

  3. adaboost 参数选择

    先看下ababoost和决策树效果对比 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection ...

  4. sklearn的常用函数以及参数

    sklearn可实现的函数或者功能可分为如下几个方面 1.分类算法2.回归算法3.聚类算法4.降维算法5.模型优化6.文本预处理 其中分类算法和回归算法又叫监督学习,聚类算法和降维算法又叫非监督学习 ...

  5. AdaBoostClassifier实战

    AdaBoostClassifier实战 部分内容摘自:http://blog.csdn.net/sun_shengyun/article/details/54289955 这里我们用一个具体的例子来 ...

  6. 【.net 深呼吸】细说CodeDom(6):方法参数

    本文老周就给大伙伴们介绍一下方法参数代码的生成. 在开始之前,先补充一下上一篇烂文的内容.在上一篇文章中,老周检讨了 MemberAttributes 枚举的用法,老周此前误以为该枚举不能进行按位操作 ...

  7. Angular2入门系列教程6-路由(二)-使用多层级路由并在在路由中传递复杂参数

    上一篇:Angular2入门系列教程5-路由(一)-使用简单的路由并在在路由中传递参数 之前介绍了简单的路由以及传参,这篇文章我们将要学习复杂一些的路由以及传递其他附加参数.一个好的路由系统可以使我们 ...

  8. Angular2入门系列教程5-路由(一)-使用简单的路由并在在路由中传递参数

    上一篇:Angular2入门系列教程-服务 上一篇文章我们将Angular2的数据服务分离出来,学习了Angular2的依赖注入,这篇文章我们将要学习Angualr2的路由 为了编写样式方便,我们这篇 ...

  9. Scrapy框架爬虫初探——中关村在线手机参数数据爬取

    关于Scrapy如何安装部署的文章已经相当多了,但是网上实战的例子还不是很多,近来正好在学习该爬虫框架,就简单写了个Spider Demo来实践.作为硬件数码控,我选择了经常光顾的中关村在线的手机页面 ...

随机推荐

  1. lombok插件@Slf4j注解不生效问题解决办法

    最近在尝试使用日志工具Sfl4j,当时使用log时报错,找了好久才解决这个问题. 1.首先需要下载Lombok插件 File->settings->Plugins 搜索Lombok,点击安 ...

  2. AJAX基本操作

    XMLHttpRequest对象: XMLHttpRequest 是 AJAX 的基础.所有现代浏览器均支持 XMLHttpRequest 对象(IE5 和 IE6 使用 ActiveXObject) ...

  3. 第十届蓝桥杯省赛-试题E: RSA 解密

    试题E: RSA 解密 这里涉及到很多数论的知识:质因子分解,扩展欧几里得算法,快速幂算法,利用快速乘算法求解快速幂(mod太大导致不能直接乘,而是需要使用加法来替代乘法) 另外还需要注意扩展欧几里得 ...

  4. 【Arduino学习笔记01】关于Arduino引脚的一些笔记

    参考链接:https://www.yiboard.com/thread-831-1-1.html Arduino Uno R3 - 引脚图 Arduino Uno R3 - 详细参数 Arduino ...

  5. python带颜色打印字符串

    python带颜色打印字符串 之前调试pwn题的时候,有时候需要将某些特别的,重要的信息用不一样的颜色打印出来.查阅一些资料,了解了print函数的特性后,自己写了一个脚本,可以用来获取带颜色信息的字 ...

  6. dk.exe自动填报程序的反编译

    dk.exe自动填报程序的反编译 dk.exe用于学校每日健康报的自动填写.

  7. ES6学习笔记(4)- 解构

    一.解构的意义 二.对象解构 三.数组解构

  8. C# 通过ServiceStack 操作Redis——List类型的使用及示例

    Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销, /// <summary> /// Redis list的实现为一个双向链表 ...

  9. 走进docker-初识

    什么是Docker容器? 容器是打包代码及其所有依赖项的软件的标准单元,因此应用程序可以从一个计算环境快速可靠地运行到另一个计算环境.Docker容器映像是一个轻量级的,独立的,可执行的软件软件包,其 ...

  10. Scientific Internet Access

    下载小飞机 https://github.com/shadowsocksr-backup 寻找ssr https://github.com/Alvin9999/new-pac/wiki/ss%E5%8 ...